×

Towards a finite-time singularity of the Navier-Stokes equations. I: Derivation and analysis of dynamical system. (English) Zbl 1415.76131

Summary: The evolution towards a finite-time singularity of the Navier-Stokes equations for flow of an incompressible fluid of kinematic viscosity \(\nu\) is studied, starting from a finite-energy configuration of two vortex rings of circulation \(\pm \Gamma\) and radius \(R\), symmetrically placed on two planes at angles \(\pm \alpha\) to a plane of symmetry \(x=0\). The minimum separation of the vortices, \(2s\), and the scale of the core cross-section, \(\delta\), are supposed to satisfy the initial inequalities \(\delta\ll s\ll R\), and the vortex Reynolds number \(R_\Gamma=\Gamma/\nu\) is supposed very large. It is argued that in the subsequent evolution, the behaviour near the points of closest approach of the vortices (the ‘tipping points’) is determined solely by the curvature \(\kappa(\tau)\) at the tipping points and by \(s(\tau)\) and \(\delta (\tau)\), where \(\tau =(\Gamma/R^2)t\) is a dimensionless time variable. The Biot-Savart law is used to obtain analytical expressions for the rate of change of these three variables, and a nonlinear dynamical system relating them is thereby obtained. The solution shows a finite-time singularity, but the Biot-Savart law breaks down just before this singularity is realised, when \(\kappa s\) and \(\delta/s\) become of order unity. The dynamical system admits ‘partial Leray scaling’ of just \(s\) and \(\kappa\), and ultimately full Leray scaling of \(s\), \(\kappa\) and \(\delta\), conditions for which are obtained. The tipping point trajectories are determined; these meet at the singularity point at a finite angle. An alternative model is briefly considered, in which the initial vortices are ovoidal in shape, approximately hyperbolic near the tipping points, for which there is no restriction on the initial value of the parameter \(\kappa\); however, it is still the circles of curvature at the tipping points that determine the local evolution, so the same dynamical system is obtained, with breakdown again of the Biot-Savart approach just before the incipient singularity is realised. The Euler flow situation \((\nu=0)\) is considered, and it is conjectured on the basis of the above dynamical system that a finite-time singularity can indeed occur in this case.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76D17 Viscous vortex flows
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
35Q30 Navier-Stokes equations
Full Text: DOI

References:

[1] Abramowitz, M. & Stegun, A. I.(Eds) 1964Handbook of Mathematical Functions, Dover. · Zbl 0171.38503
[2] Beale, J. T.; Kato, T.; Majda, A., Remarks on the breakdown of smooth solutions for the 3D Euler equations, Commun. Math. Phys., 94, 61-66, (1984) · Zbl 0573.76029 · doi:10.1007/BF01212349
[3] Bewley, G. P.; Paoletti, M. S.; Sreenivasan, K. R.; Lathrop, D. P., Characterization of reconnecting vortices in superfluid helium, Proc. Natl Acad. Sci. USA, 105, 13707-13710, (2008) · doi:10.1073/pnas.0806002105
[4] Boué, L.; Khomenko, D.; L’Vov, V. S.; Procaccia, I., Analytic solution of the approach of quantum vortices towards reconnection, Phys. Rev. Lett., 111, (2013)
[5] Brenner, M. P.; Hormoz, S.; Pumir, A., Potential singularity mechanism for the Euler equations, Phys. Rev. Fluids, 1, (2016) · doi:10.1103/PhysRevFluids.1.084503
[6] Bustamante, M. D.; Kerr, R. M., 3D Euler about a 2D symmetry plane, Physica D, 237, 14, 1912-1920, (2008) · Zbl 1143.76387
[7] Caffarelli, L.; Kohn, R.; Nirenberg, L., Partial regularity of suitable weak solutions of the Navier-Stokes equations, Commun. Pure Appl. Maths, 35, 771-831, (1982) · Zbl 0509.35067 · doi:10.1002/cpa.3160350604
[8] Constantin, P.; Fefferman, C.; Majda, A. J., Geometric constraints on potentially singular solutions for the 3-D Euler equations, Commun. Part. Diff. Equ., 21, 3-4, (1996) · Zbl 0853.35091
[9] Deng, J.; Hou, T. Y.; Yu, X., Geometric properties and nonblowup of 3D incompressible Euler flow, Commun. Part. Diff. Equ., 30, 1-2, 225-243, (2005) · Zbl 1142.35549 · doi:10.1081/PDE-200044488
[10] Doering, C. R., The 3D Navier-Stokes problem, Annu. Rev. Fluid Mech., 41, 109-128, (2009) · Zbl 1157.76008 · doi:10.1146/annurev.fluid.010908.165218
[11] Eggers, J.; Fontelos, M. A., Singularities: Formation, Structure, and Propagation, (2015), Cambridge University Press · Zbl 1335.76002 · doi:10.1017/CBO9781316161692
[12] Escauriaza, L.; Seregin, G. A.; Šverák, V., L_{3, } -solutions of the Navier-Stokes equations and backward uniqueness, Russian Math. Surveys, 58, 211-261, (2003) · Zbl 1064.35134 · doi:10.1070/RM2003v058n02ABEH000609
[13] Fefferman, C. L.2006The Millennium Prize Problems, pp. 57-70. American Mathematical Society. · Zbl 1155.00001
[14] Foias, C.; Hoang, L.; Saut, J.-C., Navier and Stokes meet Poincaré and Dulac, J. Appl. Anal. Comp., 8, 3, 727-763, (2018) · Zbl 1457.35024
[15] Foias, C.; Temam, R., Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87, 2, 359-369, (1989) · Zbl 0702.35203 · doi:10.1016/0022-1236(89)90015-3
[16] Habibah, U.; Nakagawa, H.; Fukumoto, Y., Finite-thickness effect on speed of a counter-rotating vortex pair at high Reynolds numbers, Fluid Dyn. Res., 50, (2018) · doi:10.1088/1873-7005/aaa5c8
[17] Hormoz, S.; Brenner, M. P., Absence of singular stretching of interacting vortex filaments, J. Fluid Mech., 707, 191-204, (2012) · Zbl 1275.76056 · doi:10.1017/jfm.2012.270
[18] Hou, T.; Li, R., Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations, J. Nonlinear Sci., 16, 639-664, (2006) · Zbl 1370.76015 · doi:10.1007/s00332-006-0800-3
[19] Hou, T. Y.; Li, R., Blowup or no blowup? The interplay between theory and numerics, Physica D, 237, 14, 1937-1944, (2008) · Zbl 1143.76390
[20] Kerr, R. M., Velocity and scaling of collapsing Euler vortices, Phys. Fluids, 17, (2005) · Zbl 1187.76264 · doi:10.1063/1.1905183
[21] Kerr, R. M., Vortex collapse and turbulence, Fluid Dyn. Res., 36, 4, 249-260, (2005) · Zbl 1153.76356 · doi:10.1016/j.fluiddyn.2004.09.003
[22] Kerr, R. M.; Hussain, F., Simulation of vortex reconnection, Physica D, 37, 1, 474-484, (1989)
[23] Kida, S.; Takaoka, M.; Hussain, F., Collision of two vortex rings, J. Fluid Mech., 230, 583-646, (1991) · Zbl 0850.76108 · doi:10.1017/S0022112091000903
[24] Kimura, Y.; Moffatt, H. K., Scaling properties towards vortex reconnection under the Biot-Savart law, Fluid Dyn. Res., 50, (2018) · Zbl 1419.76164 · doi:10.1088/1873-7005/aa710c
[25] Kimura, Y.; Moffatt, H. K., A tent model of vortex reconnection under Biot-Savart evolution, J. Fluid Mech., 834, (2018) · Zbl 1419.76164 · doi:10.1017/jfm.2017.769
[26] Kleckner, D.; Irvine, W. T. M., Creation and dynamics of knotted vortices, Nat. Phys., 9, 4, 253-258, (2013) · doi:10.1038/nphys2560
[27] Lemarié-Rieusset, P. G., The Navier-Stokes Problem in the XXIst Century, (2016), CRC Press, Taylor & Francis Group, Chapman & Hall · Zbl 1342.76029 · doi:10.1201/b19556
[28] Leray, J., Sur un liquide visqueux emplissant l’espace, Acta Math., 63, 193-248, (1934) · JFM 60.0726.05 · doi:10.1007/BF02547354
[29] Lin, S. J.; Corcos, G. M., The mixing layer: deterministic models of a turbulent flow. Part 3. The effect of plane strain on the dynamics of streamwise vortices, J. Fluid Mech., 141, 139-178, (1984) · Zbl 0578.76065 · doi:10.1017/S0022112084000781
[30] Mckeown, R., Ostilla-Monico, R., Pumir, A., Brenner, M. P. & Rubinstein, S. M.2018 A cascade leading to the emergence of small structures in vortex ring collisions. Preprint, arXiv:1802.09973v2 [physics.flu-dyn].
[31] Moffatt, H. K., The degree of knottedness of tangled vortex lines, J. Fluid Mech., 35, 117-129, (1969) · Zbl 0159.57903 · doi:10.1017/S0022112069000991
[32] Moffatt, H. K., The interaction of skewed vortex pairs: a model for blow-up of the Navier-Stokes equations, J. Fluid Mech., 409, 51-68, (2000) · Zbl 0962.76027 · doi:10.1017/S002211209900782X
[33] Moffatt, H. K.; Kida, S.; Ohkitani, K., Stretched vortices – the sinews of turbulence; large-Reynolds-number asymptotics, J. Fluid Mech., 259, 241-264, (1994) · doi:10.1017/S002211209400011X
[34] Moffatt, H. K.; Ricca, R. L., Helicity and the Călugăreanu invariant, Proc. R. Soc. Lond. A, 439, 411-429, (1992) · Zbl 0771.57013 · doi:10.1098/rspa.1992.0159
[35] Neu, J., The dynamics of stretched vortices, J. Fluid Mech., 143, 253-276, (1984) · Zbl 0559.76020 · doi:10.1017/S0022112084001348
[36] Pierrehumbert, R. T., A family of steady, translating vortex pairs with distributed vorticity, J. Fluid Mech., 99, 129-144, (1980) · Zbl 0473.76034 · doi:10.1017/S0022112080000559
[37] Pumir, A.; Siggia, E. D., Vortex dynamics and the existence of solutions to the Navier-Stokes equations, Phys. Fluids, 30, 1606-1626, (1987) · Zbl 0628.76033 · doi:10.1063/1.866226
[38] Robinson, A. C.; Saffman, P. G., Stability and structure of stretched vortices, Stud. Appl. Maths, 70, 2, 163-181, (1984) · Zbl 0549.76016 · doi:10.1002/sapm1984702163
[39] Saffman, P. G., The velocity of viscous vortex rings, Stud. Appl. Maths, 49, 371-380, (1970) · Zbl 0224.76032 · doi:10.1002/sapm1970494371
[40] Saffman, P. G.; Tanveer, S., The touching pair of equal and opposite uniform vortices, Phys. Fluids, 25, 1929-1930, (1982) · Zbl 0498.76025 · doi:10.1063/1.863679
[41] Scheeler, M. W.; Van Rees, W. M.; Kedia, H.; Kleckner, D.; Irvine, W. T. M., Complete measurement of helicity and its dynamics in vortex tubes, Science, 357, 487-491, (2017) · Zbl 1404.76086 · doi:10.1126/science.aam6897
[42] Schwarz, K. W., Three-dimensional vortex dynamics in superfluid He4: line – line and line – boundary interactions, Phys. Rev. B, 31, 9, 5782, (1985) · doi:10.1103/PhysRevB.31.5782
[43] Seregin, G.; Šverák, V., Navier-Stokes equations with lower bounds on the pressure, Arch. Rat. Mech. Anal., 163, 65-86, (2002) · Zbl 1002.35094 · doi:10.1007/s002050200199
[44] Siggia, E. D., Collapse and amplification of a vortex filament, Phys. Fluids, 28, 794-805, (1985) · Zbl 0596.76025 · doi:10.1063/1.865047
[45] Siggia, E. D.; Pumir, A., Incipient singularities in the Navier-Stokes equations, Phys. Rev. Lett., 55, 1749-1752, (1985) · doi:10.1103/PhysRevLett.55.1749
[46] Sullivan, I. S.; Niemela, J. J.; Hershberger, R. E.; Bolster, D.; Donnelly, R. J., Dynamics of thin vortex rings, J. Fluid Mech., 609, 319-347, (2008) · Zbl 1147.76011 · doi:10.1017/S0022112008002292
[47] De Waele, A. T. A. M.; Aarts, R. G. K. M., Route to vortex reconnection, Phys. Rev. Lett., 72, 4, 482-485, (1994) · doi:10.1103/PhysRevLett.72.482
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.