A single filament with a variable core size parameter is used to model how a vortex tube breaks down in the Euler equations. The first singularity is a self‐similar collapse which brings two antiparallel pieces of filament together at a point. This pairing then quickly encompasses a finite fraction of the initial data and the arclength begins to grow faster than exponential. A local model should exist which would allow one to understand the stage of rapid stretching in terms of simpler processes.

1.
Turbulent Shear Flows I, edited by F. Durst (Springer, New York, 1977);
Turbulent Shear Flows II, edited by L. J. S. Bradbury (Springer, New York, 1979);
Turbulent Shear Flows III, edited by L. J. S. Bradbury (Springer, New York, 1981);
Structure and Mechanisms of Turbulence I, II, Lecture Notes in Physics, edited by H. Fiedler (Springer, New York, 1978), Vols. 75 and 76.
2.
P. G.
Saffman
and
G. R.
Baker
,
Ann. Rev. Fluid Mech.
11
,
95
(
1979
);
H.
Aref
,
Ann. Rev. Fluid Mech.
15
,
345
(
1983
).,
Annu. Rev. Fluid Mech.
3.
P. B.
Rhines
,
Ann. Rev. Fluid Mech.
11
,
401
(
1979
).
4.
N. J.
Zabusky
,
J. Comp. Phys.
43
,
195
(
1981
).
5.
A.
Leonard
,
J. Comp. Phys.
37
,
289
(
1980
).
6.
D. W.
Moore
and
P. G.
Saffman
,
Philos. Trans. R. Soc. London, Ser. A
272
,
403
(
1972
). This article has the most complete discussion we could find of the asymptotic analysis leading to Eqs. (1) and (3a) for a thin vortex tube.
7.
S. E.
Widnall
and
C. Y.
Tsai
,
Philos. Trans. R. Soc. London, Ser. A
287
,
273
(
1977
).
8.
D. W.
Moore
and
P. G.
Saffman
,
Proc. R. Soc. London, Ser. A
346
,
413
(
1975
). This paper has a useful discussion of the physics of the finite core instabilities.
9.
P. G.
Saffman
,
J. Fluid Mech.
84
,
625
(
1978
), has a succinct critique of earlier stability calculations.
10.
We have not found an explicit proof that the Biot‐Savart law with cutoff is stable at short wavelengths. An earlier derivation of an instability for finite core vortices using just Biot‐Savart by
S. E.
Widnall
and
J. P.
Sullivan
,
Proc. R. Soc. London, Ser. A
322
,
335
(
1973
)
was shown to be inconsistent by
S. E.
Widnall
,
D. B.
Bliss
, and
C. Y.
Tsai
,
J. Fluid Mech.
66
,
35
(
1974
).
11.
The latter prescription is derived in Ref. 6 but we doubt its applicability to a fractal filament in which the radius of curvature is very different from the total length.
12.
D. I.
Meiron
,
G. R.
Baker
, and
S. A.
Orszag
,
J. Fluid Mech.
114
,
283
(
1982
).
13.
H.
Hasimoto
,
J. Fluid Mech.
51
,
477
(
1972
).
14.
V. E.
Zakharov
and
V. S.
Synakh
,
Sov. Phys. JETP
41
,
465
(
1976
);
D. McLaughlin, G. Papanicolaou, and M. Weinstein (private communication).
15.
B. Mandelbrot, Fractals: Form, Chance, and Dimension (Freeman, San Francisco, 1977).
16.
For a review of the current state of the art and earlier references see
M. E.
Brachet
,
U.
Frisch
,
D.
Meiron
,
B.
Nickol
, and
S.
Orszag
,
J. Fluid Mech.
130
,
411
(
1983
).
17.
S.
Leibovich
,
Ann. Rev. Fluid Mech.
10
,
221
(
1978
).
18.
W. T. Ashurst (private communication) and citations in Ref. 5.
19.
K. W. Schwarz, 75th Jubilee Conference on Helium‐4, edited by J. G. M. Armitage (World Scientific, Singapore, 1983).
20.
A. J.
Chorin
,
Commun. Pure Appl. Math.
34
,
853
(
1981
).
21.
A. J.
Chorin
,
Commun. Math. Phys.
83
,
517
(
1982
).
22.
J. T.
Beale
and
A.
Majda
,
Math. Comp.
39
,
1
(
1982
);
J. T.
Beale
and
A.
Majda
,
39
,
27
(
1982
).,
Math. Comput.
23.
For an alternative numerical treatment of (1) applied to elliptical rings see
M. R.
Dhanak
and
B.
deBernardinis
,
J. Fluid Mech.
109
,
189
(
1981
).
24.
L. F.
Shampine
,
H. A.
Watts
, and
S. M.
Davenport
,
SIAM Rev.
18
,
376
(
1976
).
25.
J. P.
Christiansen
and
N. J.
Zabusky
,
J. Fluid Mech.
61
,
219
(
1973
);
H.
Aref
and
E. D.
Siggia
,
J. Fluid Mech.
100
,
705
(
1980
).,
J. Fluid Mech.
26.
H.
Aref
and
E. D.
Siggia
,
J. Fluid Mech.
109
,
435
(
1981
).
27.
S. C.
Crow
,
AIAA J.
8
,
2172
(
1970
). This paper uses the Biot‐Savart law to find the linear instabilities of an anti‐parallel filament pair. It is inapplicable to physical vortex tubes spaced by O(σ) irrespective of the axial wavelength.
28.
P.
Grassberger
, and
I.
Procaccia
,
Phys. Rev. Lett.
50
,
346
(
1983
);
J.
Guckenheimer
and
G.
Buzyna
,
Phys. Rev. Lett.
51
,
1438
(
1983
); ,
Phys. Rev. Lett.
J. D.
Farmer
and
E.
Jen
,
Physica D
7
,
153
(
1983
);
L.‐S. Young (private communication).
29.
M.
Peskin
,
Ann. Phys.
113
,
122
(
1978
);
C.
Dasgupta
and
B. I.
Halperin
,
Phys. Rev. Lett.
47
,
1556
(
1981
).
30.
E. A.
Novikov
,
Sov. Phys. JETP
57
,
566
(
1983
).
31.
A.
Brandstäter
,
J.
Swift
,
H.
Swinney
,
A.
Wolf
,
J.
Farmer
,
E.
Jen
, and
J.
Crutchfield
,
Phys. Rev. Lett.
51
,
1442
(
1983
);
B. Malraison, P. Atlen, P. Bergé, and M. Dubois, J. Phys. Lett. (Paris) (to be published).
32.
We mention in this context a curious run of ours with fixed σ = 1 and L0/σ = 10. There was pairing but no fractal structure and L grew linearly in time. Our results for fixed σ = 0.1 are of course qualitatively different. We do not understand this very pronounced change in terms of known equilibrium properties of (2) but conjecture that one is seeing a jump in the entropy as a function of energy.
33.
U. Frisch (private communication) brought to our attention a simple counter example for Burger’s equation. See also the 1981 Les Houches Summer School Proceedings on Turbulence and Singularities (North‐Holland, Amsterdam, to be published).
This content is only available via PDF.
You do not currently have access to this content.