×

From the Peierls-Nabarro model to the equation of motion of the dislocation continuum. (English) Zbl 1451.82057

Summary: We consider a semi-linear integro-differential equation in dimension one associated to the half Laplacian whose solution represents the atom dislocation in a crystal. The equation comprises the evolutive version of the classical Peierls-Nabarro model. We show that for a large number of dislocations, the solution, properly rescaled, converges to the solution of a well known equation called by Head (1972) “the equation of motion of the dislocation continuum”. The limit equation is a model for the macroscopic crystal plasticity with density of dislocations. In particular, we recover the so called Orowan’s law which states that dislocations move at a velocity proportional to the effective stress.

MSC:

82D25 Statistical mechanics of crystals
35R09 Integro-partial differential equations
74E15 Crystalline structure
35R11 Fractional partial differential equations
47G20 Integro-differential operators

References:

[1] Barles, G., Some homogenization results for non-coercive Hamilton-Jacobi equations, Calc. Var. Partial Differential Equations, 30, 4, 449-466 (2007) · Zbl 1136.35004
[2] Biler, P.; Karch, G.; Monneau, R., Nonlinear diffusion of dislocation density and self-similar solutions, Comm. Math. Phys., 294, 1, 145-168 (2010) · Zbl 1207.82049
[3] Cabré, X.; Sire, Y., Nonlinear equations for fractional Laplacians II: existence, uniqueness, and qualitative properties of solutions, Trans. Amer. Math. Soc., 367, 2, 911-941 (2015) · Zbl 1317.35280
[4] Cabré, X.; Solà-Morales, J., Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math., 58, 12, 1678-1732 (2005) · Zbl 1102.35034
[5] Caffarelli, L.; Soria, F.; Vazquez, J. L., Regularity of solutions of the fractional porous medium flow, Eur. Math. Soc. (JEMS), 15, 5, 1701-1746 (2013) · Zbl 1292.35312
[6] Caffarelli, L.; Vazquez, J. L., Nonlinear porous medium flow with fractional potential pressure, Arch. Ration. Mech. Anal., 202, 537-565 (2011) · Zbl 1264.76105
[7] Caffarelli, L.; Vazquez, J. L., Regularity of solutions of the fractional porous medium flow with exponent \(1 / 2\), St. Petersburg Math. J., 27, 437-460 (2016) · Zbl 1335.35273
[8] Carrillo, J. A.; Ferreira, L. C.F.; Precioso, J. C., A mass-transportation approach to a one dimensional fluid mechanics model with nonlocal velocity, Adv. Math., 231, 1, 306-327 (2012) · Zbl 1252.35224
[9] Castro, A.; Còrdoba, D., Global existence singularities and ill-posedness for a nonlocal flux, Adv. Math., 219, 1916-1936 (2008) · Zbl 1186.35002
[10] Constantin, P.; Lax, P. D.; Majda, A., A simple one-dimensional model for the three dimensional vorticity, Comm. Pure Appl. Math., 38, 715-724 (1985) · Zbl 0615.76029
[11] Cozzi, M.; Dávila, J.; del Pino, M., Long-time asymptotics for evolutionary crystal dislocation models, Adv. Math., 371, Article 107242 pp. (2020) · Zbl 1446.35198
[12] Denoual, C., Dynamic dislocation modeling by combining Peierls Nabarro and Galerkin methods, Phys. Rev. B, 70, Article 024106 pp. (2004)
[13] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to fractional Sobolev spaces, Bull. Sci. Math., 136, 5, 521-573 (2012) · Zbl 1252.46023
[14] Dipierro, S.; Figalli, A.; Valdinoci, E., Strongly nonlocal dislocation dynamics in crystals, Commun. Partial Differential Equations, 39, 12, 2351-2387 (2014) · Zbl 1304.35731
[15] Dipierro, S.; Palatucci, G.; Valdinoci, E., Dislocation dynamics in crystals: a macroscopic theory in a fractional Laplace setting, Comm. Math. Phys., 333, 2, 1061-1105 (2015) · Zbl 1311.35313
[16] Evans, L. C., The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinb. Sect. A, 111, 3-4, 359-375 (1989) · Zbl 0679.35001
[17] Forcadel, N.; Imbert, C.; Monneau, R., Homogenization of some particle systems with two-body interactions and of the dislocation dynamics, Discrete Contin. Dyn. Syst., 23, 3, 785-826 (2009) · Zbl 1154.35306
[18] Garroni, A.; Leoni, G.; Ponsiglione, M., Gradient theory for plasticity via homogenization of discrete dislocations, J. Eur. Math. Soc. (JEMS), 12, 5, 1231-1266 (2010) · Zbl 1200.74017
[19] Garroni, A.; van Meurs, P.; Peletier, M.; Scardia, L., Convergence and non-convergence of many-particle evolutions with multiple signs, Arch. Ration. Mech. Anal., 235, 1, 3-49 (2020) · Zbl 1434.82082
[20] Garroni, A.; Müller, S., \( \Gamma \)-Limit of a phase-field model of dislocations, SIAM J. Math. Anal., 36, 6, 1943-1964 (2005) · Zbl 1094.82008
[21] Garroni, A.; Müller, S., A variational model for dislocations in the line tension limit, Arch. Ration. Mech. Anal., 181, 535-578 (2006) · Zbl 1158.74365
[22] González, M.; Monneau, R., Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one, Discrete Contin. Dyn. Syst., 32, 4, 1255-1286 (2012) · Zbl 1234.35267
[23] Head, A. K., Dislocation group dynamics III. Similarity solutions of the continuum approximation, Phil. Mag., 26, 65-72 (1972)
[24] Hirth, J. R.; Lothe, L., Theory of Dislocations (1992), Krieger: Krieger Malabar, Florida
[25] Imbert, C.; Monneau, R., Homogenization of first order equations with \(u / \varepsilon \)-periodic hamiltonians. Part I: local equations, Arch. Ration. Mech. Anal., 187, 1, 49-89 (2008) · Zbl 1127.70009
[26] Imbert, C.; Monneau, R.; Rouy, E., Homogenization of first order equations with \(u / \varepsilon \)-periodic hamiltonians. Part II: application to dislocations dynamics, Comm. Partial Differential Equations, 33, 1-3, 479-516 (2008) · Zbl 1143.35005
[27] Jakobsen, E. R.; Karlsen, K. H., Continuous dependence estimates for viscosity solutions of integro-PDEs, J. Differential Equations, 212, 278-318 (2005) · Zbl 1082.45008
[28] van Meurs, P. J.P.; Morandotti, M., Discrete-to-continuum limits of particles with an annihilation rule, SIAM J. Appl. Math., 79, 5, 1940-1966 (2019) · Zbl 1428.82041
[29] van Meurs, P. J.P.; Muntean, A., Upscaling of the dynamics of dislocation walls, Adv. Math. Sci. Appl., 24, 2, 401-414 (2014) · Zbl 1326.74110
[30] van Meurs, P. J.P.; Muntean, A.; Peletier, M. A., Upscaling of dislocation walls in finite domains, European J. Appl. Math., 25, 749-781 (2014) · Zbl 1327.74131
[31] Monneau, R.; Patrizi, S., Derivation of the Orowan’s law from the Peierls-Nabarro model, Comm. Partial Differential Equations, 37, 10, 1887-1911 (2012) · Zbl 1255.35215
[32] Monneau, R.; Patrizi, S., Homogenization of the Peierls-Nabarro model for dislocation dynamics, J. Differential Equations, 253, 7 (2012), 2064-2105 · Zbl 1264.35264
[33] Mora, M. G.; Peletier, M. A.; Scardia, L., Convergence of interaction-driven evolutions of dislocations with wasserstein dissipation and slip-plane confinement, SIAM J. Math. Anal., 49, 5, 4149-4205 (2017) · Zbl 1378.49012
[34] Movchan, A. B.; Bullough, R.; Willis, J. R., Stability of a dislocation: discrete model, Eur. J. Appl. Math., 9, 373-396 (1998) · Zbl 0921.73229
[35] Nabarro, F. R.N., Dislocations in a simple cubic lattice, Proc. Phys. Soc., 59, 256-272 (1947)
[36] Nabarro, F. R.N., Fifty-year study of the peierls-nabarro stress, Mat. Sci. Eng. A., 234-236, 67-76 (1997)
[37] Palatucci, G.; Savin, O.; Valdinoci, E., Local and global minimizers for a variational energy involving a fractional norm, Ann. Math. Pura Appl., 192, 4, 673-718 (2013) · Zbl 1278.82022
[38] Patrizi, S.; Valdinoci, E., Crystal dislocations with different orientations and collisions, Arch. Ration. Mech. Anal., 217, 231-261 (2015) · Zbl 1321.35234
[39] Patrizi, S.; Valdinoci, E., Homogenization and orowan’s law for anisotropic fractional operators of any order, Nonlinear Anal. TMA, 119, 3-36 (2015) · Zbl 1328.74073
[40] Patrizi, S.; Valdinoci, E., Relaxation times for atom dislocations in crystals, Calc. Var. Partial Differential Equations, 55, 3, 1-44 (2016) · Zbl 1348.82084
[41] Patrizi, S.; Valdinoci, E., Long-time behavior for crystal dislocation dynamics, Math. Models Methods Appl. Sci., 27, 12, 2185-2228 (2017) · Zbl 1377.82040
[42] Peierls, R., The size of a dislocation, Proc. Phys. Soc., 52, 34-37 (1940)
[43] Scardia, L.; Peerlings, R. H.J.; Peletier, M. A.; Geers, M. G.D., Mechanics of dislocation pile-ups: A unification of scaling regimes, J. Mech. Phys. Solids, 70, 42-61 (2014)
[44] Sedlacek, R.; Kratochvi, J.; Werner, E., The importance of being curved: bowing dislocations in a continuum description, Phil. Mag., 83, 31-34, 3735-3752 (2003)
[45] Silvestre, L., Regularity of the Obstacle Problem for a Fractional Power of the Laplace Operator (2005), University of Texas at Austin, (Ph.D. thesis)
[46] Stein, E. M., (Singular Integrals and Differentiability Properties of Functions. Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30 (1970), Princeton University Press: Princeton University Press Princeton, N.J) · Zbl 0207.13501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.