×

A fractional glance to the theory of edge dislocations. (English) Zbl 1518.35585

Indrei, Emanuel (ed.) et al., Geometric and functional inequalities and recent topics in nonlinear PDEs. Virtual conference, Purdue University, West Lafayette, IN, USA, February 28 – March 1, 2021. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 781, 103-135 (2023).
Summary: We revisit some recents results inspired by the Peierls-Nabarro model on edge dislocations for crystals which rely on the fractional Laplace representation of the corresponding equation. In particular, we discuss results related to heteroclinic, homoclinic and multibump patterns for the atom dislocation function, the large space and time scale of the solutions of the parabolic problem, the dynamics of the dislocation points and the large time asymptotics after possible dislocation collisions.
For the entire collection see [Zbl 1512.35008].

MSC:

35Q74 PDEs in connection with mechanics of deformable solids
74N05 Crystals in solids
74Q05 Homogenization in equilibrium problems of solid mechanics
74Q10 Homogenization and oscillations in dynamical problems of solid mechanics
35B40 Asymptotic behavior of solutions to PDEs
35B36 Pattern formations in context of PDEs
82D25 Statistical mechanics of crystals
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations

References:

[1] Abatangelo, Nicola, Contemporary research in elliptic PDEs and related topics. Getting acquainted with the fractional Laplacian, Springer INdAM Ser., 1-105 (2019), Springer, Cham · Zbl 1432.35216
[2] Amelinckx, S., Spiral growth patterns on apatite crystals, Nature, 841-842 (1952) · doi:10.1038/169841a0
[3] Bollmann, W., Interference effects in the electron microscopy of thin crystal foils, Phys. Rev., 1588-1589 (1956) · doi:10.1103/PhysRev.103.1588
[4] Bucur, Claudia, Nonlocal diffusion and applications, Lecture Notes of the Unione Matematica Italiana, xii+155 pp. (2016), Springer, [Cham]; Unione Matematica Italiana, Bologna · Zbl 1377.35002 · doi:10.1007/978-3-319-28739-3
[5] Burgers, J. M., Geometrical considerations concerning the structural irregularities to be assumed in a crystal, Proc. Phys. Soc., 23-33 (1940) · doi:10.1088/0959-5309/52/1/304
[6] Cabr\'{e}, Xavier, Nonlinear equations for fractional Laplacians II: Existence, uniqueness, and qualitative properties of solutions, Trans. Amer. Math. Soc., 911-941 (2015) · Zbl 1317.35280 · doi:10.1090/S0002-9947-2014-05906-0
[7] Coti Zelati, Vittorio, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 693-727 (1991) · Zbl 0744.34045 · doi:10.2307/2939286
[8] Cozzi, Matteo, Long-time asymptotics for evolutionary crystal dislocation models, Adv. Math., 107242, 109 pp. (2020) · Zbl 1446.35198 · doi:10.1016/j.aim.2020.107242
[9] Dipierro, Serena, Density estimates for degenerate double-well potentials, SIAM J. Math. Anal., 6333-6347 (2018) · Zbl 1404.35184 · doi:10.1137/17M114933X
[10] Dipierro, Serena, Strongly nonlocal dislocation dynamics in crystals, Comm. Partial Differential Equations, 2351-2387 (2014) · Zbl 1304.35731 · doi:10.1080/03605302.2014.914536
[11] Dipierro, Serena, Efficiency functionals for the L\'evy flight foraging hypothesis, J. Math Biol. (2022) · Zbl 1498.92298 · doi:10.1007/s00285-022-01808-1
[12] Dipierro, Serena, Dislocation dynamics in crystals: a macroscopic theory in a fractional Laplace setting, Comm. Math. Phys., 1061-1105 (2015) · Zbl 1311.35313 · doi:10.1007/s00220-014-2118-6
[13] Dipierro, Serena, Chaotic orbits for systems of nonlocal equations, Comm. Math. Phys., 583-626 (2017) · Zbl 1386.35416 · doi:10.1007/s00220-016-2713-9
[14] Dipierro, Serena, Heteroclinic connections for nonlocal equations, Math. Models Methods Appl. Sci., 2585-2636 (2019) · Zbl 07897046 · doi:10.1142/S0218202519500556
[15] Forcadel, Nicolas, Homogenization of some particle systems with two-body interactions and of the dislocation dynamics, Discrete Contin. Dyn. Syst., 785-826 (2009) · Zbl 1154.35306 · doi:10.3934/dcds.2009.23.785
[16] Gonz\'{a}lez, Mar\'{\i }a del Mar, Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one, Discrete Contin. Dyn. Syst., 1255-1286 (2012) · Zbl 1234.35267 · doi:10.3934/dcds.2012.32.1255
[17] van Griethuijsen, L. I., Locomotion in caterpillars, Biol. Rev. Camb. Philos. Soc., 656-670 (2014) · doi:10.1111/brv.12073
[18] Groma, I., Investigation of dislocation pattern formation in a two-dimensional self- consistent field approximation, Acta Mater., 3647-3654 (1999)
[19] Hawking, S. W., The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, No. 1, xi+391 pp. (1973), Cambridge University Press, London-New York · Zbl 0265.53054
[20] Hirsch, P. B., Direct observations of the arrangement and motion of dislocations in aluminium, Philosoph. Magazine, 677-684 (1956) · doi:10.1080/14786435608244003
[21] Hirsch, P., 50 years of TEM of dislocations: Past, present and future, Philosoph. Magazine, 4519-4528 (2006) · doi:10.1080/14786430600768634
[22] Head, A. K., Dislocation group dynamics III. Similarity solutions of the continuum approximation, Philosoph. Magazine, 65-72 (1972)
[23] Imbert, Cyril, Homogenization of first order equations with {\((u/\varepsilon )\)}-periodic {H}amiltonians. {II}. {A}pplication to dislocations dynamics, Communications in Partial Differential Equations. Comm. Partial Differential Equations, 479-516 (2008) · Zbl 1143.35005 · doi:10.1080/03605300701318922
[24] Monneau, R\'{e}gis, Derivation of Orowan’s law from the Peierls-Nabarro model, Comm. Partial Differential Equations, 1887-1911 (2012) · Zbl 1255.35215 · doi:10.1080/03605302.2012.683504
[25] Monneau, R\'{e}gis, Homogenization of the {P}eierls-{N}abarro model for dislocation dynamics, Journal of Differential Equations. J. Differential Equations, 2064-2105 (2012) · Zbl 1264.35264 · doi:10.1016/j.jde.2012.06.019
[26] Orowan, E., Zur Kristallplastizit\"at. I, Zeit. f\"ur Physik, 605-613 (1934) · doi:10.1007/BF01341478
[27] Orowan, E., Zur Kristallplastizit\"at. II, Zeit. f\"ur Physik, 614-633 (1934) · doi:10.1007/BF01341479
[28] Orowan, E., Zur Kristallplastizit\"at. III, Zeit. f\"ur Physik, 634-659 (1934) · doi:10.1007/BF01341480
[29] Palatucci, Giampiero, Local and global minimizers for a variational energy involving a fractional norm, Ann. Mat. Pura Appl. (4), 673-718 (2013) · Zbl 1278.82022 · doi:10.1007/s10231-011-0243-9
[30] Patrizi, Stefania, From the Peierls-Nabarro model to the equation of motion of the dislocation continuum, Nonlinear Anal., Paper No. 112096, 50 pp. (2021) · Zbl 1451.82057 · doi:10.1016/j.na.2020.112096
[31] Patrizi, Stefania, preprint
[32] Patrizi, Stefania, Crystal dislocations with different orientations and collisions, Arch. Ration. Mech. Anal., 231-261 (2015) · Zbl 1321.35234 · doi:10.1007/s00205-014-0832-z
[33] Patrizi, Stefania, Homogenization and {O}rowan’s law for anisotropic fractional operators of any order, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Nonlinear Anal., 3-36 (2015) · Zbl 1328.74073 · doi:10.1016/j.na.2014.07.010
[34] Patrizi, Stefania, Relaxation times for atom dislocations in crystals, Calc. Var. Partial Differential Equations, Art. 71, 44 pp. (2016) · Zbl 1348.82084 · doi:10.1007/s00526-016-1000-0
[35] Patrizi, Stefania, Long-time behavior for crystal dislocation dynamics, Math. Models Methods Appl. Sci., 2185-2228 (2017) · Zbl 1377.82040 · doi:10.1142/S0218202517500427
[36] Polanyi, M., \"Uber eine Art Gitterst\"orung, die einen Kristall plastisch machen k\"onnte, Zeit. f\"ur Physik, 660-664 (1934) · doi:10.1007/BF01341481
[37] Rabinowitz, Paul H., Proceedings of the Conference on Nonlinear Differential Equations. Multichain-type solutions for Hamiltonian systems, Electron. J. Differ. Equ. Conf., 223-235 (1999), Southwest Texas State Univ., San Marcos, TX · Zbl 0973.37040
[38] Schewe, Philip F., Polonium’s simple cubic structure, Physics Today (2007) · doi:10.1063/1.4796556
[39] R. Sedlacek, The importance of being curved: bowing dislocations in a continuum description, Philosophical Magazine, 3735-3752 (2003)
[40] Sharma, Brahama D., Some elements go cubic under pressure, Physics Today (2007) · doi:10.1063/1.4797443
[41] Silcox, J., Direct observations of defects in quenched gold, Philosoph. Magazine, 72-89 (1959) · doi:10.1080/14786435908238228
[42] Taylor, G. I., The mechanism of plastic deformation of crystals. I: Theoretical, Proc. R. Soc. Lond., Ser. A, 362-387 (1934) · JFM 60.0712.02 · doi:10.1098/rspa.1934.0106
[43] Taylor, G. I., The mechanism of plastic deformation of crystals. II: Comparison with observations, Proc. R. Soc. Lond., Ser. A, 388-404 (1934) · JFM 60.0713.01 · doi:10.1098/rspa.1934.0107
[44] Valdinoci, Enrico, Flatness of Bernoulli jets, Math. Z., 257-298 (2006) · Zbl 1116.49003 · doi:10.1007/s00209-006-0947-5
[45] Valdinoci, Enrico, Flat level set regularity of \(p\)-Laplace phase transitions, Mem. Amer. Math. Soc., vi+144 pp. (2006) · Zbl 1138.35029 · doi:10.1090/memo/0858
[46] Verma, A. R., Growth spiral patterns on carborundum crystals, Nature, 783-784 (1951) · doi:10.1038/168783b0
[47] Volterra, Vito, Sur l’\'{e}quilibre des corps \'{e}lastiques multiplement connexes, Ann. Sci. \'{E}cole Norm. Sup. (3), 401-517 (1907) · JFM 38.0814.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.