×

Extremizability of Fourier restriction to the paraboloid. (English) Zbl 1429.42011

Summary: In this article, we prove that nearly all valid, scale-invariant Fourier restriction inequalities for the paraboloid in \(\mathbb{R}^{1 + d}\) have extremizers and that \(L^p\)-normalized extremizing sequences are precompact modulo symmetries. This result had previously been established for the case \(q = 2\). In the range where the boundedness of the restriction operator is still an open question, our result is conditional on improvements toward the restriction conjecture.

MSC:

42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type

References:

[1] Bégout, P.; Vargas, A., Mass concentration phenomena for the \(L^2\)-critical nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 359, 11, 5257-5282 (2007) · Zbl 1171.35109
[2] Bennett, J.; Bez, N.; Carbery, A.; Hundertmark, D., Heat-flow monotonicity of Strichartz norms, Anal. PDE, 2, 2, 147-158 (2009) · Zbl 1190.35043
[3] Bourgain, J., Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity, Int. Math. Res. Not., 5, 253-283 (1998) · Zbl 0917.35126
[4] Brézis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88, 3, 486-490 (1983) · Zbl 0526.46037
[5] Carles, R.; Keraani, S., On the role of quadratic oscillations in nonlinear Schrödinger equations. II. The L2-critical case, Trans. Amer. Math. Soc., 359, 1, 33-62 (2007) · Zbl 1115.35119
[6] Christ, M.; Quilodrán, R., Gaussians rarely extremize adjoint Fourier restriction inequalities for paraboloids, Proc. Amer. Math. Soc., 142, 3, 887-896 (2014) · Zbl 1285.26035
[7] Constantin, P.; Saut, J.-C., Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1, 2, 413-439 (1988) · Zbl 0667.35061
[8] Foschi, D., Maximizers for the Strichartz inequality, J. Eur. Math. Soc. (JEMS), 9, 4, 739-774 (2007) · Zbl 1231.35028
[9] Foschi, D.; Silva, D. O., Some recent progress on sharp Fourier restriction theory, preprint · Zbl 1389.42016
[10] Frank, R.; Lieb, E. H.; Sabin, J., Maximizers for the Stein-Tomas inequality, Geom. Funct. Anal., 26, 4, 1095-1134 (2016) · Zbl 1357.42023
[11] Guth, L., A restriction estimate using polynomial partitioning, J. Amer. Math. Soc., 29, 2, 371-413 (2016) · Zbl 1342.42010
[12] Guth, L., Restriction estimates using polynomial partitioning II, preprint · Zbl 1415.42004
[13] Hickman, J.; Rogers, K. M., Improved Fourier restriction estimates in higher dimensions, preprint · Zbl 1423.42011
[14] Hundertmark, D.; Zharnitsky, V., On sharp Strichartz inequalities in low dimensions, Int. Math. Res. Not., Article 34080 pp. (2006) · Zbl 1131.35308
[15] Keraani, S., On the blow up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal., 235, 171-192 (2006) · Zbl 1099.35132
[16] Killip, R.; Vişan, M., Nonlinear Schrödinger equations at critical regularity. Evolution equations, Clay Math. Proc., vol. 17, 325-437 (2013), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 1298.35195
[17] Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118, 349-374 (1983) · Zbl 0527.42011
[18] Lieb, E. H.; Loss, M., Analysis, Graduate Studies in Mathematics, vol. 14 (2001), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0966.26002
[19] Lions, P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoam., 1, 1, 145-201 (1985) · Zbl 0704.49005
[20] Merle, F.; Vega, L., Compactness at blow-up time for \(L^2\) solutions of the critical non-linear Schrödinger equation in 2D, Int. Math. Res. Not., 8, 399-425 (1998) · Zbl 0913.35126
[21] Moyua, A.; Vargas, A.; Vega, L., Schrödinger maximal function and restriction properties of the Fourier transform, Int. Math. Res. Not., 16, 793-815 (1996) · Zbl 0868.35024
[22] Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73, 591-597 (1967) · Zbl 0179.19902
[23] Shao, S., Maximizers for the Strichartz and the Sobolev-Strichartz inequalities for the Schrödinger equation, Electron. J. Differential Equations, 3 (2009), 13 pp · Zbl 1173.35692
[24] Shayya, B., Weighted restriction estimates using polynomial partitioning, Proc. Lond. Math. Soc. (3), 115, 3, 545-598 (2017) · Zbl 1388.42020
[25] Sjölin, P., Regularity of solutions to the Schrödinger equation, Duke Math. J., 55, 3, 699-715 (1987) · Zbl 0631.42010
[26] Solimini, S.; Tintarev, C., Concentration analysis in Banach spaces, Commun. Contemp. Math., 18, 3, Article 1550038 pp. (2016) · Zbl 1351.46015
[27] Tao, T., A sharp bilinear restriction estimate for paraboloids, Geom. Funct. Anal., 13, 1359-1384 (2003) · Zbl 1068.42011
[28] Tao, T.; Vargas, A.; Vega, L., A bilinear approach to the Restriction and Kakeya Conjectures, J. Amer. Math. Soc., 11, 4, 967-1000 (1998) · Zbl 0924.42008
[29] Vega, L., Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc., 102, 4, 874-878 (1988) · Zbl 0654.42014
[30] Wang, H., A restriction estimate in \(R^3\) using brooms, preprint · Zbl 1492.42007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.