×

Concentration analysis in Banach spaces. (English) Zbl 1351.46015

Concentration compactness principles are a useful tool, for example in the theory of partial differential equations. The authors study general forms of such principles in abstract Banach spaces. The key tool is the notion of \(\Delta\)-convergence: a sequence \((x_k)_{k\in \mathbb{N}}\) in a Banach space \(X\) is said to be \(\Delta\)-convergent to \(x\in X\) if \(\limsup_{k\to \infty}(\| x_k-x\|-\| x_k-y\|)\leq 0\) holds for every \(y\in X\).
The authors first study the notion of \(\Delta\)-convergence in uniformly convex spaces. For example, they show that in a uniformly convex Banach space \(X\), \(\Delta\)-limits are unique and every bounded sequence has a \(\Delta\)-convergent subsequence. If \(X\) is in addition uniformly smooth, then every \(\Delta\)-convergent sequence is bounded.
It is further proved that in a uniformly convex and uniformly smooth Banach space \(X\), \(\Delta\)-convergence is equivalent to weak convergence if and only if \(X\) satisfies the Opial condition (this includes all Hilbert spaces and the spaces \(\ell^p\) for \(1<p<\infty\)).
The main result regarding concentration compactness in terms of \(\Delta\)-convergence reads as follows: if \(X\) is uniformly convex and uniformly smooth, \(D_0\) is a group of isometries on \(X\) satisfying a certain property (called dislocation group by the authors), and \(D\subseteq D_0\) with \(\text{id}\in D\), then every bounded sequence \((x_k)_{k\in \mathbb{N}}\) in \(X\) has a \(\Delta\)-profile decomposition with respect to \(D\), i.e., there exist elements \(g_k^{(n)}\in D\) and \(w^{(n)}, r_k\in X\) (for \(n,k\in \mathbb{N}\)) such that the following conditions hold: \(g_k^{(1)}=\text{id}\) for each \(k\), \((h_k^{-1}(r_k))\) is \(\Delta\)-convergent to 0 for every sequence \((h_k)\) in \(D\), \((g_k^{(n)})^{-1}(g_k^{(m)}(x))\to 0\) weakly for every \(x\in X\) and \(n\neq m\), and (after passing to a subsequence \((x_k)\)) one has \[ x_k=r_k+\sum_{i=1}^{\infty}g_k^{(i)}(w^{(i)}), \] where the series converges unconditionally and uniformly with respect to \(k\).
The authors also prove a version of the Brezis-Lieb lemma with \(\Delta\)-convergence instead of pointwise convergence in the space \(L^p\) for \(p\geq 3\).

MSC:

46B20 Geometry and structure of normed linear spaces
46B50 Compactness in Banach (or normed) spaces
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI

References:

[1] 1. R. Adams and J. Fournier, Sobolev Spaces (Academic Press, 2003).
[2] 2. Adimurthi and C. Tintarev, On compactness in Trudinger-Moser inequality, Ann. Sc. Norm. Super. Pisa Cl. Sci.13(5) (2014) 1-18. · Zbl 1301.46011
[3] 3. Adimurthi and C. Tintarev, On the Brezis-Lieb lemma without pointwise convergence, preprint. · Zbl 1336.46026
[4] 4. T. Aubin, Equations differentielles non lineaires et probleme de Yamabe concernant la courbure scalaire, J. Math. Pures Appl.55 (1976) 269-296. genRefLink(128, ’S0219199715500388BIB004’, ’A1976CM61800002’); · Zbl 0336.53033
[5] 5. H. Bahouri, A. Cohen and G. Koch, A general wavelet-based profile decomposition in the critical embedding of function spaces, Confluentes Math.3 (2011) 387-411. [Abstract] · Zbl 1231.42034
[6] 6. H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc.88 (1983) 486-490. genRefLink(16, ’S0219199715500388BIB006’, ’10.2307
[7] 7. J. Chabrowski, Weak Convergence Methods for Semilinear Elliptic Equations (World Scientific Publishing, 1999). · Zbl 1059.35038
[8] 8. M. Cwikel, Opial’s condition and cocompactness for Besov and Triebel-Lizorkin spaces, in preparation.
[9] 9. G. Devillanova, S. Solimini and C. Tintarev, A notion of weak convergence in metric spaces, preprint; arXiv:1409.6463v1. · Zbl 1356.46018
[10] 10. M. Edelstein, The construction of an asymptotic center with a fixed-point property, Bull. Amer. Math. Soc.78 (1972) 206-208. genRefLink(16, ’S0219199715500388BIB010’, ’10.1090
[11] 11. T. Figiel, On the moduli of convexity and smoothness, Studia Math.56 (1976) 121-155. genRefLink(128, ’S0219199715500388BIB011’, ’A1976CL74700003’); · Zbl 0344.46052
[12] 12. P. Gérard, Description du défaut de compacité de l’injection de Sobolev, ESAIM: Control Optim. Calc. Var.3 (1998) 213-233. genRefLink(16, ’S0219199715500388BIB012’, ’10.1051
[13] 13. K. Goedel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics (Cambridge University Press, 1990).
[14] 14. S. Jaffard, Analysis of the lack of compactness in the critical Sobolev embeddings, J. Funct. Anal.161 (1999) 384-396. genRefLink(16, ’S0219199715500388BIB014’, ’10.1006
[15] 15. R. Killip and M. Visan, Nonlinear Schrödinger Equations at Critical Regularity, Clay Mathematics Proceedings, Vol. 17 (American Mathematical Society, 2013).
[16] 16. G. S. Koch, Profile decompositions for critical Lebesgue and Besov space embeddings, preprint (2010); arXiv:1006.3064.
[17] 17. G. Kyriasis, Nonlinear approximation and interpolation spaces, J. Approx. Theory113 (2001) 110-126. genRefLink(16, ’S0219199715500388BIB017’, ’10.1006
[18] 18. T. C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc.60 (1976) 179-182. genRefLink(16, ’S0219199715500388BIB018’, ’10.1090
[19] 19. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II. Function Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Vol. 97 (Springer, 1979). genRefLink(16, ’S0219199715500388BIB019’, ’10.1007 · Zbl 0403.46022
[20] 20. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 1, Rev. Mat. Iberoamericana1(1) (1985) 145-201. genRefLink(16, ’S0219199715500388BIB020’, ’10.4171 · Zbl 0704.49005
[21] 21. V. Maz’ya, Classes of domains and embedding theorems for functional spaces, Dokl. Acad. Nauk SSSR 133 (1960) 527-530 (in Russian); English translation, Soviet Math. Dokl. 1 (1961) 882-885.
[22] 22. D. R. Moreira and E. V. Teixeira, Weak convergence under nonlinearities, An. Acad. Brasil. Ciênc.75(1) (2003) 9-19. genRefLink(128, ’S0219199715500388BIB022’, ’000181615300002’); · Zbl 1042.47040
[23] 23. D. R. Moreira and E. V. Teixeira, On the behavior of weak convergence under nonlinearities and applications, Proc. Amer. Math. Soc.133 (2005) 1647-1656 (electronic). genRefLink(16, ’S0219199715500388BIB023’, ’10.1090
[24] 24. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc.73 (1967) 591-597. genRefLink(16, ’S0219199715500388BIB024’, ’10.1090
[25] 25. G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, preprint (2013); arXiv:1302.5923. · Zbl 1296.35064
[26] 26. I. Schindler and K. Tintarev, An abstract version of the concentration compactness principle, Revista Mat. Complutense15 (2002) 1-20. · Zbl 1142.35375
[27] 27. R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom.20 (1984) 479-495. genRefLink(128, ’S0219199715500388BIB027’, ’A1984AKC1800011’); · Zbl 0576.53028
[28] 28. S. Solimini, A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev Space, Ann. Inst. H. Poincaré Anal. Non Linéaire12 (1995) 319-337. genRefLink(128, ’S0219199715500388BIB028’, ’A1995RH39900003’); · Zbl 0837.46025
[29] 29. M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z.187 (1984) 511-517. genRefLink(16, ’S0219199715500388BIB029’, ’10.1007
[30] 30. G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pura Appl.110 (1976) 353-372. genRefLink(16, ’S0219199715500388BIB030’, ’10.1007 · Zbl 0353.46018
[31] 31. T. Tao, A pseudoconformal compactification of the nonlinear Schrödinger equation and applications, New York J. Math.15 (2009) 265-282. · Zbl 1184.35296
[32] 32. T. Tao, Compactness and Contradiction (American Mathematical Society, 2013). genRefLink(16, ’S0219199715500388BIB032’, ’10.1090
[33] 33. C. Tintarev, Concentration analysis and compactness, in Concentration Analysis and Applications to PDE, eds. Adimuri, K. Sandeep, I. Schindler and C. Tintarev, Trends in Mathematics (Birkhäuser, 2013), pp. 117-141. genRefLink(16, ’S0219199715500388BIB033’, ’10.1007 · Zbl 1030.35080
[34] 34. K. Tintarev and K.-H. Fieseler, Concentration Compactness: Functional-Analytic Grounds and Applications (Imperial College Press, 2007). [Abstract] · Zbl 1118.49001
[35] 35. H. Triebel, Theory of Function Spaces (Birkhäuser, 1983). genRefLink(16, ’S0219199715500388BIB035’, ’10.1007
[36] 36. N. S. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3)22 (1968) 265-274. · Zbl 0159.23801
[37] 37. D. van Dulst, Equivalent norms and the fixed point property for nonexpansive mappings, J. London Math. Soc.25(2) (1982) 139-144. genRefLink(16, ’S0219199715500388BIB037’, ’10.1112 · Zbl 0453.46017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.