×

Computational techniques to locate crossing/sliding regions and their sets of attraction in non-smooth dynamical systems. (English) Zbl 1398.65159

Summary: Several models in the applied sciences are characterized by instantaneous changes in the solutions or discontinuities in the vector field. Knowledge of the geometry of interaction of the flow with the discontinuities can give new insights on the behaviour of such systems. Here, we focus on the class of the piecewise smooth systems of Filippov type. We describe some numerical techniques to locate crossing and sliding regions on the discontinuity surface, to compute the sets of attraction of these regions together with the mathematical form of the separatrices of such sets. Some numerical tests will illustrate our approach.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
34L99 Ordinary differential operators
Full Text: DOI

References:

[1] V. Acary and B. Brogliato, Numerical Methods for Nonsmooth Dynamical Systems. Applications in Mechanics and Electronics, Lecture Notes in Applied and Computational Mechanics. Springer-Verlag, Berlin, 2008. · Zbl 1173.74001
[2] A. Agosti; L. Formaggia; A. Scotti, Analysis of a model for precipitation and dissolution coupled with a Darcy flux, Journal of Mathematical Analysis and Applications, 431, 752-781 (2015) · Zbl 1328.92092 · doi:10.1016/j.jmaa.2015.06.003
[3] A. Agosti, B. Giovanardi, L. Formaggia and A. Scotti, Numerical simulation of geochemical compaction with discontinuous reactions, in Coupled Problems 2015 - Proceedings of the 6th International Conference on Coupled Problems in Science and Engineering, 2015, 300-311.
[4] A. Agosti; B. Giovanardi; L. Formaggia; A. Scotti, A numerical procedure for geochemical compaction in the presence of discontinuous reaction, Advances in Water Resources, 94, 332-344 (2016) · doi:10.1016/j.advwatres.2016.06.001
[5] I. Arango; J. Taborda, Numerical analysis of sliding dynamics in three-dimensional Filippov systems using SPTI method, International Journal of Mathematical Models and Method in Applied Sciences, 2, 342-354 (2008)
[6] I. Arango; J. Taborda, Integration-free analysis of nonsmooth local dynamics in planar Filippov systems, International Journal of Bifurcation and Chaos, 19, 947-975 (2009) · Zbl 1167.34303 · doi:10.1142/S0218127409023391
[7] I. Arango; J. Taborda, Topological classification of limit cycles of piecewise smooth dynamical systems and its associated non-standard bifurcations, Entropy, 16, 1949-1968 (2014) · Zbl 1338.37064 · doi:10.3390/e16041949
[8] M. Berardi; L. Lopez, On the continuous extension of Adams - Bashforth methods and the event location in discontinuous ODEs, Applied Mathematics Letters, 25, 995-999 (2012) · Zbl 1242.65128 · doi:10.1016/j.aml.2011.11.014
[9] M. Calvo; J. Montijano; L. Rández, On the solution of discontinuous IVPs by adaptive Runge-Kutta codes, Numerical Algorithms, 33, 163-182 (2003) · Zbl 1030.65082 · doi:10.1023/A:1025507920426
[10] M. Calvo; J. I. Montijano; L. Rández, Algorithm 968: Disode45: A matlab runge-kutta solver for piecewise smooth ivps of filippov type, ACM Trans. Math. Softw., 43, Art.25, 14 pp (2017) · Zbl 1396.65111 · doi:10.1145/2907054
[11] R. Casey; H. deJong; J. Gouze, Piecewise-linear models of genetics regulatory networks: Equilibria and their stability, Journal Mathematical Biology, 52, 27-56 (2006) · Zbl 1091.92030 · doi:10.1007/s00285-005-0338-2
[12] R. Cavoretto; A. DeRossi; E. Perracchione; E. Venturino, Robust approximation algorithms for the detection of attraction basins in dynamical systems, J. Sci. Comput., 68, 395-415 (2016) · Zbl 1344.65118 · doi:10.1007/s10915-015-0143-z
[13] A. Colombo; U. Galvanetto, Stable manifolds of saddles in piecewise smooth systems, Computer Modeling in Engineering & Sciences, 53, 235-254 (2009) · Zbl 1231.34068
[14] A. Colombo and U. Galvanetto, Computation of the basins of attraction in non-smooth dynamical systems, in Proceedings of the IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design, held Aberdeen, UK, 27-30 July 2010 (eds. M. Wiercigroch and G. Rega), vol. 32, Springer Science, 2013, 17-29.
[15] A. Colombo; M. R. Jeffrey, Nondeterministic chaos, and the two-fold singularity in piecewise smooth flows, SIAM Journal on Applied Dynamical Systems, 10, 423-451 (2011) · Zbl 1227.34044 · doi:10.1137/100801846
[16] A. Colombo; M. R. Jeffrey, The two-fold singularity of nonsmooth flows: Leading order dynamics in n-dimensions, Physica D, 263, 1-10 (2013) · Zbl 1285.34007 · doi:10.1016/j.physd.2013.07.015
[17] N. DelBuono; C. Elia; L. Lopez, On the equivalence between the sigmoidal approach and Utkin’s approach for piecewise-linear models of gene regulatory networks, SIAM Journal on Applied Dynamical Systems, 13, 1270-1292 (2014) · Zbl 1321.37079 · doi:10.1137/130950483
[18] N. DelBuono; L. Lopez, Direct event location techniques based on Adams multistep methods for discontinuous ODEs, Applied Mathematics Letters, 49, 152-158 (2015) · Zbl 1382.65202 · doi:10.1016/j.aml.2015.05.012
[19] F. Dercole; Y. A. Kuznetsov, SlideCont: An Auto97 driver for bifurcation analysis of filippov systems, ACM Trans. Math. Softw., 31, 95-119 (2005) · Zbl 1073.65070 · doi:10.1145/1055531.1055536
[20] A. Dhooge, W. Govaerts, Y. A. Kuznetsov, W. Mestrom, A. M. Riet and B. Sautois, MATCONT and CL MATCONT: Continuation toolboxes in Matlab, december 2006 edition, 2006, URL http://www.ricam.oeaw.ac.at/people/page/jameslu/Teaching/MathModelBioSciences_Summer08/EX3/MATCONT_manual.pdf.
[21] A. Dhooge; W. Govaerts; Y. A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of odes, ACM Trans. Math. Softw., 29, 141-164 (2003) · Zbl 1070.65574 · doi:10.1145/779359.779362
[22] L. Dieci; C. Elia; L. Lopez, Uniqueness of Filippov sliding vector field on the intersection of two surfaces in \(\mathbb R^3\) and implications for stability of periodic orbits, Journal of Nonlinear Science, 25, 1453-1471 (2015) · Zbl 1333.34022 · doi:10.1007/s00332-015-9265-6
[23] L. Dieci; L. Lopez, Fundamental matrix solutions of piecewise smooth differential systems, Mathematics and Computers in Simulation, 81, 932-953 (2011) · Zbl 1215.65121 · doi:10.1016/j.matcom.2010.10.012
[24] L. Dieci; L. Lopez, One-sided direct event location techniques in the numerical solution of discontinuous differential systems, BIT Numerical Mathematics, 55, 987-1003 (2015) · Zbl 1338.65181 · doi:10.1007/s10543-014-0538-5
[25] C. Erazo; M. E. Homer; P. T. Piiroinen; M. Di Bernardo, Dynamic cell mapping algorithm for computing basins of attraction in planar filippov systems, International Journal of Bifurcation and Chaos, 27, 1730041, 15PP (2017) · doi:10.1142/S0218127417300415
[26] G. F. Fasshauer, Meshfree Approximation Methods with MATLAB, World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2007. · Zbl 1123.65001
[27] A. Filippov, Differential Equations with Discontinuous Right Hand Side, Kluwer, Dordrecht, Netherlands, 1988. · Zbl 0138.32204
[28] U. Galvanetto, Computation of the separatrix of basins of attraction in a non-smooth dynamical system, Physica D, 237, 2263-2271 (2008) · Zbl 1158.37313 · doi:10.1016/j.physd.2008.02.009
[29] M. Gameiro; J.-P. Lessard; A. Pugliese, Computation of smooth manifolds via rigorous multi-parameter continuation in infinite dimensions, Foundations of Computational Mathematics, 16, 531-575 (2016) · Zbl 1347.65102 · doi:10.1007/s10208-015-9259-7
[30] W. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM, Philadelphia, 2000. · Zbl 0935.37054
[31] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31. Springer-Verlag, Berlin, 2002. · Zbl 0994.65135
[32] H. Hoppe; T. DeRose; T. Duchamp; J. McDonald; W. Stuetzle, Surface reconstruction from unorganized points, SIGGRAPH Comput. Graph., 26, 71-78 (1992) · doi:10.1145/133994.134011
[33] L. Lopez and S. Maset, Time transfomations for the event location of discontinuous ODEs, Math. Comp, Published electronically December 26, 2017
[34] J.-M. Melenk; I. Bubuska, The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Eng., 139, 289-314 (1996) · Zbl 0881.65099 · doi:10.1016/S0045-7825(96)01087-0
[35] B.-S. Morse, T.-S. Yoo, P. Rheingans, D.-T. Chen and K.-R. Subramanian, Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions, in Proceedings of International Conference on Shape Modeling and Applications. Genova, Italy May 7-11, 2001, IEEE, 2001, 72-89.
[36] P. T. Piiroinen and Y. A. Kuznetsov, An event-driven method to simulate Filippov systems with accurate computing of sliding motions, ACM Transactions on Mathematical Software, 34 (2008), Art. 13, 24 pp. · Zbl 1190.65109
[37] E. Plathe; S. Kjoglum, Analysis and genetic properties of gene regulatory networks with graded response functions, Physica D, 201, 150-176 (2005) · Zbl 1078.34015 · doi:10.1016/j.physd.2004.11.014
[38] A. Tornambé, Modelling and control of impact in mechanical systems: Theory and experimental results, IEEE Trans. Automat. Control, 44, 294-309 (1999) · Zbl 0982.70505 · doi:10.1109/9.746255
[39] G. Turk; J. F. O’Brien, Modelling with implicit surfaces that interpolate, ACM Trans. Graph., 21, 855-873 (2002) · doi:10.1145/1198555.1198640
[40] H. Wendland, Fast evaluation of radial basis functions: Methods based on partition of unity, in Approximation Theory X: Wavelets, Splines, and Applications, Vanderbilt University Press, 2002, 473-483. · Zbl 1031.65022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.