×

Localization of the window functions of dual and tight Gabor frames generated by the Gaussian function. (English. Russian original) Zbl 07891402

Sb. Math. 215, No. 3, 364-382 (2024); translation from Mat. Sb. 215, No. 3, 80-99 (2024).
Authors’ abstract: Gabor frames generated by the Gaussian function are considered. The localization of the window functions of dual frames is estimated in terms of the uncertainty constants, its dependence on the relation between the parameters of the time-frequency window, and the degree of overcompleteness. It is shown that localization worsens rapidly with the increasing disproportion in the parameters of the window. On the other hand, the higher the system of functions forming the frame is overdetermined, the better the window function of the dual frame is localized. For a tight frame, the localization of the window function with the same set of parameters is much better than that for the dual frame. This problem is closely related to the problem of interpolation because we have uniform Gaussian function shifts. The nodal interpolation function and the window function of the dual frame are constructed from the same coefficients. These coefficients also play an important role in deriving formulae for the uncertainty constants. This is why their properties related to sign alternation and the monotonicity of decrease of the absolute value are considered in the paper.

MSC:

42C15 General harmonic expansions, frames
42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
65T60 Numerical methods for wavelets
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)

References:

[1] J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Grundlehren Math. Wiss., vol. 38, J. Springer, Berlin 1932, 262 pp. · JFM 58.0929.06
[2] A. M. Perelomov, “On the completeness of a system of coherent states”, Theoret. and Math. Phys. 6:2 (1971), 156-164. · doi:10.1007/BF01036577
[3] V. Bargmann, P. Butera, L. Girardello and J. R. Klauder, “On the completeness of the coherent states”, Rep. Math. Phys. 2:4 (1971), 221-228. · doi:10.1016/0034-4877(71)90006-1
[4] H. Bacry, A. Grossmann and J. Zak, “Geometry of generalized coherent states”, Group theoretical methods in physics (Nijmegen 1975), Lecture Notes in Phys., vol. 50, Springer-Verlag, Berlin-New York 1976, pp. 249-268. · Zbl 0363.22015 · doi:10.1007/3-540-07789-8_25
[5] D. Gabor, “Theory of communication. Part 1. The analysis of information”, J. Inst. Elec. Engrs. Part III 93:26 (1946), 429-441. · doi:10.1049/ji-3-2.1946.0074
[6] R. J. Glauber, “Coherent and incoherent states of the radiation field”, Phys. Rev. (2) 131:6 (1963), 2766-2788. · Zbl 1371.81166 · doi:10.1103/PhysRev.131.2766
[7] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., vol. 61, SIAM, Philadelphia, PA 1992, xx+357 pp. · Zbl 0776.42018 · doi:10.1137/1.9781611970104
[8] I. Daubechies and A. Grossmann, “Frames in the Bargmann space of entire functions”, Comm. Pure Appl. Math. 41:2 (1988), 151-164. · Zbl 0632.30049 · doi:10.1002/cpa.3160410203
[9] Yu. I. Lyubarskii, “Frames in the Bargmann space of entire functions”, Entire and subharmonic functions, Adv. Soviet Math., vol. 11, Amer. Math. Soc., Providence, RI 1992, pp. 167-180. · Zbl 0770.30025 · doi:10.1090/advsov/011
[10] I. Daubechies, H. J. Landau and Z. Landau, “Gabor time-frequency lattices and the Wexler-Raz identity”, J. Fourier Anal. Appl. 1:4 (1995), 437-478. · Zbl 0888.47018 · doi:10.1007/s00041-001-4018-3
[11] J. Wexler and S. Raz, “Discrete Gabor expansions”, Signal Process. 21:3 (1990), 207-220. · doi:10.1016/0165-1684(90)90087-F
[12] H. G. Feichtinger, A. Grybos and D. M. Onchis, “Approximate dual Gabor atoms via the adjoint lattice method”, Adv. Comput. Math. 40:3 (2014), 651-665. · Zbl 1309.42043 · doi:10.1007/s10444-013-9324-1
[13] H. G. Feichtinger, F. Luef and T. Werther, “A guided tour from linear algebra to the foundations of Gabor analysis”, Gabor and wavelet frames, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 10, World Sci. Publ., Hackensack, NJ 2007, pp. 1-49. · Zbl 1134.42338 · doi:10.1142/9789812709080_0001
[14] O. Christensen, An introduction to frames and Riesz bases, 2nd ed., Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham 2016, xxv+704 pp. · Zbl 1348.42033 · doi:10.1007/978-3-319-25613-9
[15] A. J. E. M. Janssen, “Duality and biorthogonality for Weyl-Heisenberg frames”, J. Fourier Anal. Appl. 1:4 (1995), 403-436. · Zbl 0887.42028 · doi:10.1007/s00041-001-4017-4
[16] A. J. E. M. Janssen, “Some Weyl-Heisenberg frame bound calculations”, Indag. Math. (N.S.) 7:2 (1996), 165-183. · Zbl 1056.42512 · doi:10.1016/0019-3577(96)85088-9
[17] A. J. E. M. Janssen and T. Strohmer, “Characterization and computation of canonical tight windows for Gabor frames”, J. Fourier Anal. Appl. 8:1 (2002), 1-28. · Zbl 1001.42023 · doi:10.1007/s00041-002-0001-x
[18] A. J. E. M. Janssen, “On generating tight Gabor frames at critical density”, J. Fourier Anal. Appl. 9:2 (2003), 175-214. · Zbl 1024.42018 · doi:10.1007/s00041-003-0011-3
[19] K. Gröchenig, Foundations of time-frequency analysis, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Inc., Boston, MA 2001, xvi+359 pp. · Zbl 0966.42020 · doi:10.1007/978-1-4612-0003-1
[20] Y. Meyer, “Principe d”incertitude, bases hilbertiennes et algèbres d’opérateurs”, Séminaire Bourbaki, vol. 1985/1986, Astérisque, vol. 145-146, Soc. Math. France, Paris 1987, pp. 209-223, Exp. No. 662. · Zbl 0648.42011
[21] J. Bourgain, “A remark on the uncertainty principle for Hilbertian basis”, J. Funct. Anal. 79:1 (1988), 136-143. · Zbl 0656.46016 · doi:10.1016/0022-1236(88)90033-X
[22] I. Ya. Novikov, V. Yu. Protasov and M. A. Skopina, Wavelet theory, Transl. Math. Monogr., vol. 239, Amer. Math. Soc., Providence, RI 2011, xiv+506 pp. · Zbl 1213.42002 · doi:10.1090/mmono/239
[23] E. A. Lebedeva, “Minimization of the uncertainty constant of the family of Meyer wavelets”, Math. Notes 81:4 (2007), 489-495. · Zbl 1148.42014 · doi:10.1134/S0001434607030261
[24] E. A. Lebedeva and V. Yu. Protasov, “Meyer wavelets with least uncertainty constant”, Math. Notes 84:5 (2008), 680-687. · Zbl 1219.42029 · doi:10.1134/S0001434608110096
[25] H. Bölcskei, “A necessary and sufficient condition for dual Weyl-Heisenberg frames to be compactly supported”, J. Fourier Anal. Appl. 5:5 (1999), 409-419. · Zbl 0933.42029 · doi:10.1007/BF01261635
[26] H. Bölcskei and J. E. M. Janssen, “Gabor frames, unimodularity, and window decay”, J. Fourier Anal. Appl. 6:3 (2000), 255-276. · Zbl 0960.42008 · doi:10.1007/BF02511155
[27] T. Strohmer, “Approximation of dual Gabor frames, window decay, and wireless communications”, Appl. Comput. Harmon. Anal. 11:2 (2001), 243-262. · Zbl 0986.42018 · doi:10.1006/acha.2001.0357
[28] T. Strohmer and S. Beaver, “Optimal OFDM design for time-frequency dispersive channels”, IEEE Trans. Commun. 51:7 (2003), 1111-1122. · doi:10.1109/TCOMM.2003.814200
[29] V. Maz’ya and G. Schmidt, “On approximate approximations using Gaussian kernels”, IMA J. Numer. Anal. 16:1 (1996), 13-29. · Zbl 0838.65005 · doi:10.1093/imanum/16.1.13
[30] V. Maz’ya and G. Schmidt, Approximate approximations, Math. Surveys Monogr., vol. 141, Amer. Math. Soc., Providence, RI 2007, xiv+349 pp. · Zbl 1120.41013 · doi:10.1090/surv/141
[31] L. A. Minin, I. Ya. Novikov and S. N. Ushakov, “On expansion with respect to Gabor frames generated by the Gaussian function”, Math. Notes 100:6 (2016), 890-892. · Zbl 1368.42035 · doi:10.1134/S0001434616110316
[32] E. A. Kiselev, L. A. Minin and I. Ya. Novikov, “Calculation of the Riesz constants and orthogonalization for incomplete systems of coherent states by means of theta functions”, Sb. Math. 207:8 (2016), 1127-1141. · Zbl 1362.42064 · doi:10.1070/SM8542
[33] Ch. K. Chui, An introduction to wavelets, Wavelet Anal. Appl., vol. 1, Academic Press, Inc., Boston, MA 1992, x+264 pp. · Zbl 0925.42016
[34] E. T. Whittaker and G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Part II, 4th ed., Cambridge Univ. Press, Cambridge 1927, pp. 233-578. · JFM 53.0180.04 · doi:10.1017/CBO9780511608759
[35] M. V. Zhuravlev, E. A. Kiselev, L. A. Minin and S. M. Sitnik, “Jacobi theta-functions and systems of integral shifts of Gaussian functions”, J. Math. Sci. (N.Y.) 173:2 (2011), 231-241. · Zbl 1219.42023 · doi:10.1007/s10958-011-0246-5
[36] N. K. Bary, A treatise on trigonometric series, vols. I, II, A Pergamon Press Book, The Macmillan Co., New York 1964, xxiii+553 pp., xix+508 pp. · Zbl 0129.28002
[37] H. G. Feichtinger and G. Zimmermann, “A Banach space of test functions for Gabor analysis”, Gabor analysis and algorithms. Theory and applications, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Inc., Boston, MA 1998, pp. 123-170. · Zbl 0890.42008 · doi:10.1007/978-1-4612-2016-9_4
[38] E. A. Kiselev, L. A. Minin and I. Ya. Novikov, “Limit properties of systems of integer translates and functions generating tight Gabor frames”, Math. Notes 106:1 (2019), 71-80. · Zbl 1429.42032 · doi:10.1134/S0001434619070071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.