×

Nonparametric estimation of jump rates for a specific class of piecewise deterministic Markov processes. (English) Zbl 1472.60115

Summary: In this paper, we consider a unidimensional piecewise deterministic Markov process (PDMP), with homogeneous jump rate \(\lambda (x)\). This process is observed continuously, so the flow \(\phi\) is known. To estimate nonparametrically the jump rate, we first construct an adaptive estimator of the stationary density, then we derive a quotient estimator \(\hat{\lambda}_n\) of \(\lambda \). Under some ergodicity conditions, we bound the risk of these estimators (and give a uniform bound on a small class of functions), and prove that the estimator of the jump rate is nearly minimax (up to a \(\ln^2(n)\) factor). The simulations illustrate our theoretical results.

MSC:

60J05 Discrete-time Markov processes on general state spaces
60J25 Continuous-time Markov processes on general state spaces
62G05 Nonparametric estimation
60J76 Jump processes on general state spaces

References:

[1] Azaïs, R., Bardet, J.-B., Génadot, A., Krell, N. and Zitt, P.-A. (2014). Piecewise deterministic Markov process – recent results. In Journées MAS 2012. ESAIM Proc. 44 276-290. Les Ulis: EDP Sci. · Zbl 1331.60153 · doi:10.1051/proc/201444017
[2] Azaïs, R., Dufour, F. and Gégout-Petit, A. (2014). Non-parametric estimation of the conditional distribution of the interjumping times for piecewise-deterministic Markov processes. Scand. J. Stat. 41 950-969. · Zbl 1305.60066 · doi:10.1111/sjos.12076
[3] Azaïs, R. and Genadot, A. (2018). A new characterization of the jump rate for piecewise-deterministic Markov processes with discrete transitions. Comm. Statist. Theory Methods 47 1812-1829. · Zbl 1392.62247 · doi:10.1080/03610926.2017.1327072
[4] Azaïs, R. and Muller-Gueudin, A. (2016). Optimal choice among a class of nonparametric estimators of the jump rate for piecewise-deterministic Markov processes. Electron. J. Stat. 10 3648-3692. · Zbl 1353.62091 · doi:10.1214/16-EJS1207
[5] Barron, A., Birgé, L. and Massart, P. (1999). Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 301-413. · Zbl 0946.62036 · doi:10.1007/s004400050210
[6] Blanchard, Ph. and Jadczyk, A. (1995). Events and piecewise deterministic dynamics in event-enhanced quantum theory. Phys. Lett. A 203 260-266. · Zbl 1020.81524 · doi:10.1016/0375-9601(95)00432-3
[7] Cloez, B., Dessalles, R., Genadot, A., Malrieu, F., Marguet, A. and Yvinec, R. (2017). Probabilistic and piecewise deterministic models in biology. In Journées MAS 2016 de la SMAI - Phénomènes Complexes et Hétérogènes. ESAIM Proc. Surveys 60 225-245. Les Ulis: EDP Sci. · Zbl 1383.92011 · doi:10.1051/proc/201760225
[8] Comte, F., Genon-Catalot, V. and Rozenholc, Y. (2007). Penalized nonparametric mean square estimation of the coefficients of diffusion processes. Bernoulli 13 514-543. · Zbl 1127.62067 · doi:10.3150/07-BEJ5173
[9] Davis, M.H.A. (1993). Markov Models and Optimization. Monographs on Statistics and Applied Probability 49. London: CRC Press. · Zbl 0780.60002 · doi:10.1007/978-1-4899-4483-2
[10] de Saporta, B., Dufour, F. and Zhang, H. (2016). Numerical Methods for Simulation and Optimization of Piecewise Deterministic Markov Processes: Application to Reliability. Mathematics and Statistics Series. London: ISTE. · Zbl 1338.65021
[11] DeVore, R.A. and Lorentz, G.G. (1993). Constructive Approximation. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 303. Berlin: Springer. · Zbl 0797.41016 · doi:10.1007/978-3-662-02888-9
[12] Doumic, M., Hoffmann, M., Krell, N. and Robert, L. (2015). Statistical estimation of a growth-fragmentation model observed on a genealogical tree. Bernoulli 21 1760-1799. · Zbl 1388.62318 · doi:10.3150/14-BEJ623
[13] Dumas, V., Guillemin, F. and Robert, P. (2002). A Markovian analysis of additive-increase multiplicative-decrease algorithms. Adv. in Appl. Probab. 34 85-111. · Zbl 1002.60091 · doi:10.1239/aap/1019160951
[14] Farid, M. and Davis, M.H.A. (1999). Optimal consumption and exploration: A case study in piecewise-deterministic Markov modelling. Ann. Oper. Res. 88 121-137. Optimal control and differential games (Vienna, 1997). · Zbl 0959.91046 · doi:10.1023/A:1018918027153
[15] Fujii, T. (2013). Nonparametric estimation for a class of piecewise-deterministic Markov processes. J. Appl. Probab. 50 931-942. · Zbl 1429.62365 · doi:10.1239/jap/1389370091
[16] Guillemin, F., Robert, P. and Zwart, B. (2004). AIMD algorithms and exponential functionals. Ann. Appl. Probab. 14 90-117. · Zbl 1041.60072 · doi:10.1214/aoap/1075828048
[17] Hodara, P., Krell, N. and Löcherbach, E. (2018). Non-parametric estimation of the spiking rate in systems of interacting neurons. Stat. Inference Stoch. Process. 21 81-111. · Zbl 1393.62012 · doi:10.1007/s11203-016-9150-4
[18] Höpfner, R. and Brodda, K. (2006). A stochastic model and a functional central limit theorem for information processing in large systems of neurons. J. Math. Biol. 52 439-457. · Zbl 1094.92016 · doi:10.1007/s00285-005-0361-3
[19] Krell, N. (2016). Statistical estimation of jump rates for a piecewise deterministic Markov processes with deterministic increasing motion and jump mechanism. ESAIM Probab. Stat. 20 196-216. · Zbl 06674053 · doi:10.1051/ps/2016013
[20] Krell, N. and Schmisser, É. (2021). Supplement (additional proofs) to nonparametric estimation of jump rates for a specific class of piecewise deterministic Markov processes. · Zbl 1472.60115 · doi:10.3150/20-BEJ1312SUPPA
[21] Krell, N. and Schmisser, É. (2021). Supplement (simulations) to nonparametric estimation of jump rates for a specific class of piecewise deterministic Markov processes. · Zbl 1472.60115 · doi:10.3150/20-BEJ1312SUPPB
[22] Laurençot, P. and Perthame, B. (2009). Exponential decay for the growth-fragmentation/cell-division equation. Commun. Math. Sci. 7 503-510. · Zbl 1183.35038
[23] Meyer, Y. (1990). Ondelettes et Opérateurs. I. Actualités Mathématiques. [Current Mathematical Topics]. Paris: Hermann. Ondelettes. [Wavelets]. · Zbl 0694.41037
[24] Renault, V., Thieullen, M. and Trélat, E. (2017). Optimal control of infinite-dimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via optogenetics. Netw. Heterog. Media 12 417-459. · Zbl 1376.93118 · doi:10.3934/nhm.2017019
[25] Robert, L., Hoffmann, M., Krell, N., Aymerich, S., Robert, J. and Doumic, M. (2014). Division control in Escherichia coli is based on a size-sensing rather than timing mechanism. BMC Biol. 12 17.
[26] Rudnicki, R. and Tyran-Kamińska, M. (2015). Piecewise deterministic Markov processes in biological models. In Semigroups of Operators - Theory and Applications. Springer Proc. Math. Stat. 113 235-255. Cham: Springer. · Zbl 1330.60095 · doi:10.1007/978-3-319-12145-1_15
[27] Tsybakov, A.B. (2004). Introduction à L’estimation Non-paramétrique. Mathématiques & Applications (Berlin) [Mathematics & Applications] 41. Berlin: Springer · Zbl 1029.62034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.