Skip to main content
Log in

A stochastic model and a functional central limit theorem for information processing in large systems of neurons

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The paper deals with information transmission in large systems of neurons. We model the membrane potential in a single neuron belonging to a cell tissue by a non time-homogeneous Cox-Ingersoll-Ross type diffusion; in terms of its time-varying expectation, this stochastic process can convey deterministic signals.

We model the spike train emitted by this neuron as a Poisson point process compensated by the occupation time of the membrane potential process beyond the excitation threshold.

In a large system of neurons 1≤iN processing independently the same deterministic signal, we prove a functional central limit theorem for the pooled spike train collected from the N neurons. This pooled spike train allows to recover the deterministic signal, up to some shape transformation which is explicit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brémaud, P.: Point processes and queues. Springer, 1981

  2. Brodda, K., Höpfner, R.: A stochastic model for information processing in large systems of biological neurons. Preprint 09/04, Fachbereich Mathematik, Universität Mainz, 2004 (see http://www.mathematik.uni-mainz.de/~hoepfner)

  3. Cox, J., Ingersoll, J., Ross, S.: A theory of the term structure of interest rates. Econometrica 53, 385–407 (1985)

    MathSciNet  Google Scholar 

  4. Cremers, H., Kadelka, D.: On weak convergence of integral functionals of stochastic processes with applications to processes taking paths in L p E. Stoch. Proc. Appl. 21, 305–317 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ditlevsen, S., Lánský, P.: Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model. Physical review E 71, 011907 (2005)

    Article  MathSciNet  Google Scholar 

  6. Giorno, V., Lánský, P., Nobile, A., Ricciardi, L.: Diffusion approximation and first-passage-time problem for a model neuron. Biol. Cybern. 58, 387–404 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gihman, I., Skorohod, A.: The theory of stochastic processes. Vol. I+II, Springer, 1974

  8. Grinblat, L.: A limit theorem for measurable random processes and its applications. Proc. Am. Math. Soc. 61, 371–376 (1976)

    Article  MathSciNet  Google Scholar 

  9. Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. 2nd ed., North-Holland, 1989

  10. Jacod, J., Shiryaev, A.: Limit theorems for stochastic processes. Springer, 1987

  11. Karatzas, Y., Shreve, S.: Brownian motion and stochastic calculus. 2nd ed., Springer, 1991

  12. Kutoyants, Yu.: Statistical inference for spatial Poisson processes. Springer, 1998

  13. Kutoyants, Yu.: Statistical inference for ergodic diffusion processes. Springer, 2003

  14. Lánský, P., Lánská, V.: Diffusion approximation of the neuronal model with with synaptic reversal potentials. Biol. Cybern. 56, 19–26 (1987)

    Article  MATH  Google Scholar 

  15. Lánský, P., Sacerdote, L.: The Ornstein-Uhlenbeck neuronal model with signal-dependent noise. Physics Letters A 285, 132–140 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lánský, P., Sato, S.: The stochastic diffusion models of nerve membrane depolarization and interspike interval generation. J. Peripheral Nervous System 4, 27–42 (1999)

    Google Scholar 

  17. Lánský, P., Sacerdote, L., Tomassetti, F.: On the comparison of Feller and Ornstein-Uhlenbeck models for neural activity. Biol. Cybern. 73, 457–465 (1995)

    Article  MATH  Google Scholar 

  18. Loève, M.: Probability theory. Van Nostrand, 1963

  19. Métivier, M.: Semimartingales. de Gruyter, 1982

  20. Movshon, V.: Reliability of neuronal reponses. Neuron 27, 412–414 (2000)

    Article  Google Scholar 

  21. Overbeck, L.: Estimation for continuous branching processes. Scand. J. Statist. 25, 111–126 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Overbeck, L., Rydén, T.: Estimation in the Cox-Ingersoll-Ross model. Econometric Theory 13, 430–461 (1997)

    Article  MathSciNet  Google Scholar 

  23. Shadlen, M., Newsome, W.: The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neuroscience 18, 3870–3896 (1998)

    Google Scholar 

  24. Shinomoto, S., Sakai, Y., Funahashi, S.: The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex. Neural Comput. 11, 935-951 (1999)

    Article  Google Scholar 

  25. Tuckwell, H.: Stochastic processes in the neurosciences. CBMS-NSF conference series in applied mathematics, SIAM, 1989

  26. Zabreyko, P., et al.: Integral equations. Noordhoff, 1975

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Höpfner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höpfner, R., Brodda, K. A stochastic model and a functional central limit theorem for information processing in large systems of neurons. J. Math. Biol. 52, 439–457 (2006). https://doi.org/10.1007/s00285-005-0361-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-005-0361-3

Mathematics Subject Classification (2000)

Key words or phrases

Navigation