×

Branches of positive and free boundary solutions for some singular quasilinear elliptic problems. (English) Zbl 1173.35055

Semilinear elliptic problems of the form \[ -\Delta u = f(u) \text{ in } \Omega, \qquad u=0 \text{ on } \partial\Omega, \] where \(\Omega\) is a smooth bounded domain in \({\mathbb R}^N\), have received a great deal of attention. Of particular interest here is the existence of nonnegative solutions in the case where \(f\) is not Lipschitz continuous at \(0\). In this situation there may be nonnegative solutions that are positive only in a proper open subset of \(\Omega\), so a free boundary \(\Gamma=\partial\{x\in\Omega:u(x)=0\}\) occurs. This can also occur if \(\Delta\) is replaced by other elliptic operators such as the \(p\)-Laplacian.
Motivated by this phenomenon, the authors consider the one-dimensional problem \[ -(|u'|^{p-2}u')' = f(u) \text{ in }(-L,L), \qquad u(\pm L)=0, (*) \] where \(p>1\) and \(f\) satisfies a number of conditions. The main ones are that \(f\) is defined at least on \([0,\infty)\) with \(f\in C^0(0,\infty)\cap L^1_{loc}(0,\infty)\) with \(\limsup_{s\searrow 0} f(s) \leq 0\), and in addition, there is a number \(r>0\) such that \(f(r)=0\) and \(f(s)<0\) if \(s\in(0,r)\) and \(f(s)>0\) if \(s\in(r,\infty)\). They prove several existence and multiplicity results for solutions of \((*)\) which extend the work of the first two authors [C. R. Acad. Sci., Paris, Sér. I, Math. 329, No. 7, 587–592 (1999; Zbl 0937.35064)] to the case that \(f\) is singular at the origin, but now incorporating a phenomenon on the number of positive solutions arising for suitable singular functions \(f\) as in the works of Y. S. Choi, A. C. Lazer and P. J. McKenna [Nonlinear Anal., Theory Methods Appl. 32, No. 3, 305–314 (1998; Zbl 0940.35089)] and T. Horváth and P. L. Simon [“On the exact number of solutions of a singular boundary value problem”, preprint].
The authors also refine their results for the special case \[ -(|u'|^{p-2}u')' + \alpha u^m = \lambda u^q \text{ in }(-1,1), \qquad u(\pm 1)=0, \] where \(p>1\) and \(-1<m<q<p-1\).

MSC:

35J60 Nonlinear elliptic equations
35J65 Nonlinear boundary value problems for linear elliptic equations
35R35 Free boundary problems for PDEs
Full Text: DOI

References:

[1] Antontsev, S. N.; Díaz, J. I.; Shmarev, S. I., Energy Methods for Free Boundary Problems: Applications to Nonlinear PDEs and Fluid Mechanics (2001), Birkhäuser-Verlag: Birkhäuser-Verlag Basel · Zbl 0988.35002
[2] Aronson, D.; Crandall, M. G.; Peletier, L. A., Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal., 16, 1001-1022 (1982) · Zbl 0518.35050
[3] Bandle, C.; Pozio, A.; Tesei, A., The asymptotic behavior of the solutions of degenerate parabolic equations, Trans. Amer. Math. Soc., 303, 487-501 (1987) · Zbl 0633.35041
[4] Bandle, C.; Sperb, R. P.; Stakgold, I., Diffusion and reaction with monotone kinetics, Nonlinear Anal., 8, 321-333 (1984) · Zbl 0545.35011
[5] Bandle, C.; Stakgold, I., The formation of the dead core in parabolic reaction-diffusion problems, Trans. Amer. Math. Soc., 286, 275-293 (1984) · Zbl 0519.35042
[6] Benilan, Ph.; Brezis, H.; Crandall, M. G., A semilinear equation in \(L^1(R^N)\), Ann. Sc. Norm. Super. Pisa, 4, 2, 523-555 (1975) · Zbl 0314.35077
[7] Bensoussan, A.; Brezis, H.; Friedman, A., Estimates on the free boundary for quasi variational inequalities, Comm. Partial Differential Equations, 2, 3, 297-321 (1977) · Zbl 0361.35020
[8] Bernis, F., Compactness of the support for some nonlinear elliptic problems of arbitrary order in dimension \(n\), Comm. Partial Differential Equations, 9, 3, 271-312 (1984) · Zbl 0537.35036
[9] Bidaut-Véron, M. F.; Galaktionov, V.; Grillot, P.; Véron, L., Singularities for a 2-dimensional semilinear elliptic equation with a non-Lipschitz nonlinearity, J. Differential Equations, 154, 318-338 (1999) · Zbl 0927.35037
[10] Brezis, H., Solutions of variational inequalities with compact support, Uspekhi Mat. Nauk, 129, 103-108 (1974) · Zbl 0304.35036
[11] Cortázar, C.; Elgueta, M.; Felmer, P., On a semilinear elliptic problem in \(R^N\) with a non-Lipschitz nonlinearity, Adv. Differential Equations, 1, 199-218 (1996) · Zbl 0845.35031
[12] Choi, Y. S.; Lazer, A. C.; McKenna, P. J., Some remarks on a singular elliptic boundary value problem, Nonlinear Anal., 32, 305-314 (1998) · Zbl 0940.35089
[13] Conrad, F.; Brauner, C. M.; Issard-Roch, F.; Nicolaenko, B., Nonlinear eigenvalue problems in elliptic variational inequalities: A local study, Comm. Partial Differential Equations, 10, 2, 151-190 (1985) · Zbl 0569.49003
[14] Crandall, M. G.; Rabinowitz, P. H.; Tartar, L., On a Dirichlet problem with singular nonlinearity, Comm. Partial Differential Equations, 2, 193-222 (1977) · Zbl 0362.35031
[15] Dávila, J.; Montenegro, M., A singular equation with positive and free boundary solutions, RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 97, 107-112 (2003) · Zbl 1229.35091
[16] Dávila, J.; Montenegro, M., Positive versus free boundary solutions to a singular equation, J. Anal. Math., 90, 303-335 (2003) · Zbl 1173.35743
[17] Dávila, J.; Montenegro, M., Nonlinear problems with solutions exhibiting a free boundary on the boundary, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22, 303-330 (2005) · Zbl 1083.35139
[18] J.I. Díaz, Técnica de supersoluciones locales para problemas estacionarios no lineales: aplicación al cálculo de flujos subsónicos, Memoria 14, Real Academia de Ciencias, 1980; J.I. Díaz, Técnica de supersoluciones locales para problemas estacionarios no lineales: aplicación al cálculo de flujos subsónicos, Memoria 14, Real Academia de Ciencias, 1980
[19] Díaz, J. I., Nonlinear Partial Differential Equations and Free Boundaries (1985), Pitman: Pitman London · Zbl 0595.35100
[20] Díaz, J. I.; Hernández, J., On the existence of a free boundary for a class of reaction-diffusion systems, SIAM J. Math. Anal., 15, 670-685 (1984) · Zbl 0556.35126
[21] Díaz, J. I.; Hernández, J., Qualitative properties of free boundaries for some nonlinear degenerate parabolic equations, (Boccardo, L.; Tesei, A., Nonlinear Parabolic Equations: Qualitative Properties of Solutions (1987), Longman: Longman London), 85-93 · Zbl 0643.35056
[22] Díaz, J. I.; Hernández, J., Global bifurcation and continua of nonnegative solutions for a quasilinear elliptic problem, C. R. Acad. Sci. Paris Ser. I, 329, 587-592 (1999) · Zbl 0937.35064
[23] Díaz, J. I.; Herrero, M. A., Proprietés de support compact pour certaines équations elliptiques et paraboliques non linéaires, C. R. Acad. Sci. Paris Ser. I, 286, 815-817 (1978) · Zbl 0396.35008
[24] Díaz, J. I.; Herrero, M. A., Estimates on the support of the solutions of some nonlinear elliptic and parabolic problems, Proc. Roy. Soc. Edinburgh Sect. A, 98, 249-258 (1981) · Zbl 0478.35083
[25] Díaz, J. I.; Morel, J. M.; Oswald, L., An elliptic equation with singular nonlinearity, Comm. Partial Differential Equations, 12, 1333-1344 (1987) · Zbl 0634.35031
[26] Eisner, J.; Kučera, M.; Recke, L., Bifurcation direction and exchange of stability for variational inequalities on nonconvex sets, Nonlinear Anal., 67, 4, 1082-1101 (2007) · Zbl 1117.35006
[27] Friedman, A.; Phillips, D. S., The free boundary of a semilinear elliptic equation, Trans. Amer. Math. Soc., 282, 153-182 (1984) · Zbl 0552.35079
[28] Fulks, W.; Maybee, J. S., A singular nonlinear equation, Osaka J. Math., 12, 1-19 (1960) · Zbl 0097.30202
[29] Ghergu, M.; R&abreve;dulescu, V. D., Singular Elliptic Problems. Bifurcation and Asymptotic Analysis (2008), Oxford University Press: Oxford University Press Oxford · Zbl 1159.35030
[30] Glowinski, R.; Lions, J. L.; Tremolières, R., Analyse Numérique des Inéquations Variationelles, vols. 1 & 2 (1976), Dunod: Dunod Paris · Zbl 0358.65091
[31] Gurtin, M. E.; MacCamy, R. C., On the diffusion of biological populations, Math. Biosci., 33, 35-49 (1977) · Zbl 0362.92007
[32] Haitao, Y., Positive versus compact support solutions to a singular elliptic problem, J. Math. Anal. Appl., 319, 830-840 (2006) · Zbl 1155.35363
[33] Hernández, J., Some free boundary problems for predator-prey systems with nonlinear diffusion, Proc. Sympos. Pure Math., 45, 481-488 (1986) · Zbl 0605.35085
[34] Hernández, J.; Karátson, J.; Simon, P. L., Multiplicity for semilinear elliptic equations involving singular nonlinearity, Nonlinear Anal., 65, 265-283 (2006) · Zbl 1387.35232
[35] Hernández, J.; Mancebo, F. J., Singular elliptic and parabolic equations, (Chipot, M.; Quittner, P., Handbook Differential Equations, vol. 3 (2006), Elsevier: Elsevier Amsterdam), 317-400 · Zbl 1284.35002
[36] Hernández, J.; Mancebo, F. J.; Vega, J. M., On the linearization of some singular nonlinear elliptic problems and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19, 6, 777-813 (2002) · Zbl 1020.35065
[37] Hernández, J.; Mancebo, F. J.; Vega, J. M., Positive solutions for singular nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A, 137, 41-62 (2007) · Zbl 1180.35231
[38] T. Horváth, P.L. Simon, On the exact number of solutions of a singular boundary value problem, preprint, 2008; T. Horváth, P.L. Simon, On the exact number of solutions of a singular boundary value problem, preprint, 2008
[39] P. Huang, S. Wang, T. Yeh, Classification of bifurcation diagrams of a \(p\); P. Huang, S. Wang, T. Yeh, Classification of bifurcation diagrams of a \(p\)
[40] Kamin, S.; Véron, L., Flat core properties associated to the \(p\)-Laplace operator, Proc. Amer. Math. Soc., 118, 4, 1079-1085 (1993) · Zbl 0801.35029
[41] Karátson, J.; Simon, P. L., Bifurcations of semilinear elliptic equations with convex nonlinearity, Electron. J. Differential Equations, 43, 1-16 (1999) · Zbl 0933.35058
[42] Kichenassamy, S.; Smoller, J., On the existence of radial solutions of quasi-linear elliptic quations, Nonlinearity, 16, 3, 677-694 (1990) · Zbl 0719.35027
[43] Kinderlehrer, D.; Stampacchia, G., An Introduction to Variational Inequalities and Their Applications (1980), Academic Press: Academic Press New York · Zbl 0457.35001
[44] T. Ouyang, J. Shi, M. Yao, Exact multiplicity and bifurcation of solutions of a singular equation, preprint, 1996; T. Ouyang, J. Shi, M. Yao, Exact multiplicity and bifurcation of solutions of a singular equation, preprint, 1996
[45] Pozio, A.; Tesei, A., Support properties of solutions for a class of degenerate parabolic problems, Comm. Partial Differential Equations, 12, 47-75 (1987) · Zbl 0629.35071
[46] Pucci, P.; García-Huidobro, M.; Manásevich, R.; Serrin, J., Qualitative properties of ground states for singular elliptic equations with weights, Ann. Mat. Pura Appl., 185, S205-S243 (2006) · Zbl 1115.35050
[47] Pucci, P.; Serrin, J., The Maximum Principle, Progr. Nonlinear Differential Equations Appl., vol. 75 (2007), Birkhäuser Boston: Birkhäuser Boston Boston, MA · Zbl 1134.35001
[48] Shi, J.; Yao, M., On a singular nonlinear semilinear elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A, 138, 1389-1401 (1998) · Zbl 0919.35044
[49] Smoller, J., Shock Waves and Reaction-Diffusion Equations (1983), Springer-Verlag: Springer-Verlag Berlin · Zbl 0508.35002
[50] Smoller, J.; Wasserman, A. G., Global bifurcation of steady-state solutions, J. Differential Equations, 39, 269-290 (1981) · Zbl 0425.34028
[51] Stuart, C. A., Existence and approximation of solutions of nonlinear elliptic equations, Math. Z., 147, 53-63 (1976) · Zbl 0324.35037
[52] Stuart, C. A., Maximal and minimal solutions of elliptic differential equations with discontinuous nonlinearities, Math. Z., 163, 239-249 (1978) · Zbl 0403.35036
[53] Vázquez, J. L., A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12, 191-202 (1984) · Zbl 0561.35003
[54] Wang, S., A correction for a paper by J. Smoller and A. Wasserman, J. Differential Equations, 77, 199-202 (1989) · Zbl 0688.34017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.