×

On the group structure of \([J(X), \Omega (Y)]\). (English) Zbl 1379.55012

For a well pointed co-\(H\)-space \(X\), let \(J(X)\) denote the James construction (i.e. reduced product) of \(X\), and let \(J_n(X)\) be the \(n\)-th stage of the James filtration of \(J(X)\). Since there is the James filtration \(X=J_1(X)\subset J_2(X)\subset \cdots \subset J_n(X)\subset J_{n+1}(X)\subset \cdots\) and \(J(X)=\varinjlim J_n(X)\), the total Cohen group \([J(X),\Omega Y]\) is represented as \([J(X),\Omega Y]=\varprojlim [J_n(X),\Omega Y].\) In this paper, the authors study the co-\(H\)-structure of the generalized Fox space \(\hat{\mathfrak{F}}(X)\) via the generalized Whitehead products and they investigate the reduced suspension co-\(H\)-structure on \(\Sigma J_n^*(X)\), where \(J_n^*(X)=J(X)\sqcup *\). As an application they determine the group structure of \([J_n(X),\Omega Y]\) and \([J(X),\Omega Y]\) by using the argument given in their paper [Q. J. Math. 66, No. 1, 111–132 (2015; Zbl 1312.55012)] replacing \(S^1\) by a co-\(H\)-space \(X\). Moreover, they obtain an example that \([J(S^3),\Omega S^{10}]\) is not a subgroup of \([J(S^1),\Omega S^{10}]\), and they also construct a space \(\hat{Y}\) such that \(\Omega \hat{Y}\) is not homotopy commutative and the group \([J(S^r),\Omega \hat{Y}]\) is abelian for any \(r\geq 1\).

MSC:

55Q05 Homotopy groups, general; sets of homotopy classes
55Q15 Whitehead products and generalizations
55Q20 Homotopy groups of wedges, joins, and simple spaces
55P35 Loop spaces

Citations:

Zbl 1312.55012
Full Text: DOI

References:

[1] Arkowitz, M.: The generalized Whitehead product. Pac. J. Math. 12, 7-23 (1962) · Zbl 0118.18404 · doi:10.2140/pjm.1962.12.7
[2] Arkowitz, M., Lee, D.: Properties of comultiplications on a wedge of spheres. Topol. Appl. 157, 1607-1621 (2010) · Zbl 1203.55007 · doi:10.1016/j.topol.2010.03.001
[3] Barratt, M.G., James, I.M., Stein, N.: Whitehead products and projective spaces. J. Math. Mech. 9, 813-819 (1960) · Zbl 0096.17502
[4] Cohen, F.R.: “On combinatorial group theory in homotopy” in homotopy theory and its applications. Contemp. Math. 188, 57-63 (1995) · doi:10.1090/conm/188/02233
[5] Cohen, F.R., Wu, J.: Artin’s braid groups, free groups, and the loop space of the \[22\]- sphere. Q. J. Math. 4(62), 891-921 (2011) · Zbl 1252.55005
[6] Deutsch, E., Sagan, B.: Congruences for Catalan and Motzkin numbers and related sequences. J. Number Theory 117, 191-215 (2006) · Zbl 1163.11310 · doi:10.1016/j.jnt.2005.06.005
[7] Eu, S., Liu, S., Yeh, Y.: Catalan and Motzkin numbers modulo \[44\] and \[88\]. Eur. J. Comb. 29, 1449-1466 (2008) · Zbl 1149.11008 · doi:10.1016/j.ejc.2007.06.019
[8] Fine, N.J.: Binomial coefficients modulo a prime. Am. Math. Mon. 54(10), 589-592 (1947) · Zbl 0030.11102 · doi:10.2307/2304500
[9] Fox, R.: Homotopy groups and torus homotopy groups. Ann. Math. 49, 471-510 (1948) · Zbl 0038.36602 · doi:10.2307/1969292
[10] Ganea, T.: Cogroups and suspensions. Invent. Math. 9, 185-197 (1970) · Zbl 0194.55103 · doi:10.1007/BF01404323
[11] Golasiński, M., Gonçalves, D., Wong, P.: Generalizations of Fox homotopy groups, Whitehead products, and Gottlieb groups, Ukrain. Math. Zh. 57(3), 320-328 (2005) (translated in Ukrainian Math. J. 57, no. 3 (2005), 382-393) · Zbl 1094.55012
[12] Golasiński, M., Gonçalves, D., Wong, P.: On Fox spaces and Jacobi identities. Math. J. Okayama Univ. 50, 161-176 (2008) · Zbl 1158.55015
[13] Golasiński, M., Gonçalves, D., Wong, P.: James construction, Fox torus homotopy groups, and Hopf invariants. In: Homotopy theory and related topics. Contemp. Math. 519, 123-132 (2010) · Zbl 1223.55006
[14] Golasiński, M., Gonçalves, D., Wong, P.: On the group structure of \[[\Omega{\mathbb{S}}^2, \Omega Y]\][ΩS2,ΩY]. Q. J. Math. 66(1), 111-132 (2015) · Zbl 1312.55012 · doi:10.1093/qmath/hau023
[15] Golasiński, M., Mukai, J.: Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces. Springer Cham Heidelberg, New York, Dordrecht, London (2014) · Zbl 1312.55001
[16] Stasheff, J.: On homotopy abelian \[HH\]- spaces. Proc. Camb. Phil. Soc. 57, 734-745 (1961) · Zbl 0106.16504 · doi:10.1017/S0305004100035878
[17] Whitehead, G.W.: Elements of Homotopy Theory. Graduate Texts in Mathematics 61. Springer-Verlag, New York, Berlin (1978) · Zbl 0406.55001
[18] Wu, J.: Homotopy theory of the suspensions of the projective plane. Mem. Amer. Math. Soc. 162(769) (2003) · Zbl 1022.55009
[19] Wu, J.: On maps from loop suspensions to loop spaces and the shuffle relations on the Cohen groups. Mem. Amer. Math. Soc. 180(851) (2006) · Zbl 1098.55006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.