×

On fractional semidiscrete Dirac operators of Lévy-Leblond type. (English) Zbl 1523.30061

Summary: In this paper, we introduce a wide class of space-fractional and time-fractional semidiscrete Dirac operators of Lévy-Leblond type on the semidiscrete space-time lattice \(h{\mathbb{Z}}^n\times [0,\infty) (h>0)\), resembling to fractional semidiscrete counterparts of the so-called parabolic Dirac operators. The methods adopted here are fairly operational, relying mostly on the algebraic manipulations involving Clifford algebras, discrete Fourier analysis techniques as well as standard properties of the analytic fractional semidiscrete semigroup \(\left\lbrace \exp (-te^{i\theta}(-\Delta_h)^{\alpha})\right\rbrace_{t\ge 0}\), carrying the parameter constraints \(0<\alpha \le 1\) and \(|\theta |\le \frac{\alpha \pi}{2}\). The results obtained involve the study of Cauchy problems on \(h{\mathbb{Z}}^n\times [0,\infty)\).
{© 2023 The Authors. Mathematische Nachrichten published by Wiley-VCH GmbH.}

MSC:

30G35 Functions of hypercomplex variables and generalized variables
35R11 Fractional partial differential equations
39A12 Discrete version of topics in analysis
47D06 One-parameter semigroups and linear evolution equations

References:

[1] N.Aizawa, Generalization of superalgebras to color superalgebras and their representations, Adv. Appl. Clifford Algebr.28 (2018), no. 1, 1-14. · Zbl 1418.17065
[2] N.Aizawa, Z.Kuznetsova, H.Tanaka, and F.Toppan, Graded lie symmetries of the Lévy-Leblond equations, Prog. Theor. Exp. Phys.2016 (2016), no. 12, 123A01. · Zbl 1361.81047
[3] F.Baaske, S.Bernstein, H.De Ridder, and F.Sommen, On solutions of a discretized heat equation in discrete Clifford analysis, J. Differ. Equ. Appl.20 (2014), no. 2, 271-295. · Zbl 1283.39002
[4] B.Baeumer, M.Meerschaert, and E.Nane, Brownian subordinators and fractional cauchy problems, Trans. Amer. Math. Soc.361 (2009), no. 7, 3915-3930. · Zbl 1186.60079
[5] D.Baleanu, J. E.Restrepo, and D.Suragan, A class of time‐fractional Dirac‐type operators, Chaos Solitons Fractals143 (2021), 110590. · Zbl 1505.47050
[6] S.Bao, D.Constales, H.De Bie, and T.Mertens, Solutions for the Lévy-Leblond or parabolic Dirac equation and its generalizations, J. Math. Phys.61 (2020), no. 1, 011509. · Zbl 1431.81056
[7] S.Bernstein, Factorization of the nonlinear Schrödinger equation and applications, Complex Var. Elliptic Equ.51 (2006), nos. 5-6, 429-452. · Zbl 1119.30028
[8] S.Bernstein, A fractional dirac operator, noncommutative analysis, operator theory and applications, Springer, 2016, pp. 27-41. · Zbl 1394.47047
[9] F.Brackx, H.De Schepper, F.Sommen, and L.Van de Voorde, Discrete clifford analysis: a germ of function theory, hypercomplex analysis, Springer, 2008, pp. 37-53. · Zbl 1173.30034
[10] P.Cerejeiras, N.Faustino, and N.Vieira, Numerical Clifford analysis for nonlinear Schrödinger problem, Numer. Methods Partial Differ Equ.24 (2008), no. 4, 1181-1202. · Zbl 1170.65071
[11] P.Cerejeiras, U.Kaehler, and S.Lucas, Discrete pseudo‐differential operators in hypercomplex analysis, Math. Meth. Appl. Sci. (2021), 117https://doi.org/10.1002/mma.7881. · Zbl 07869456 · doi:10.1002/mma.7881
[12] P.Cerejeiras, U.Kähler, and F.Sommen, Parabolic Dirac operators and the Navier-Stokes equations over time‐varying domains, Math. Methods Appl. Sci.28 (2005), no. 14, 1715-1724. · Zbl 1082.30039
[13] P.Cerejeiras, F.Sommen, and N.Vieira, Fischer decomposition and special solutions for the parabolic Dirac operator, Math. Methods Appl. Sci.30 (2007), no. 9, 1057-1069. · Zbl 1128.30015
[14] Ó.Ciaurri, C.Lizama, L.Roncal, and J. L.Varona, On a connection between the discrete fractional laplacian and superdiffusion, Appl. Math. Lett.49 (2015), 119-125. · Zbl 1381.35215
[15] Ó.Ciaurri, T.Alastair Gillespie, L.Roncal, J. L.Torrea, and J. L.Varona, Harmonic analysis associated with a discrete Laplacian, J. Anal. Math.132 (2017), no. 1, 109-131. · Zbl 1476.39003
[16] Ó.Ciaurri, L.Roncal, P. R.Stinga, J. L.Torrea, and J. L.Varona, Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications, Adv. Math.330 (2018), 688-738. · Zbl 1391.35388
[17] P. M.deCarvalho‐Neto and G.Planas, Mild solutions to the time fractional Navier-Stokes equations in \({\mathbb{R}}^N\), J. Differ. Equ.259 (2015), no. 7, 2948-2980. · Zbl 1436.35316
[18] H. DeRidder et al., Discrete function theory based on skew Weyl relations, Proc. Amer. Math. Soc.138 (2010), no. 9, 3241-3256. · Zbl 1201.30062
[19] N.Faustino, Solutions for the Klein-Gordon and Dirac equations on the lattice based on Chebyshev polynomials, Complex Anal. Oper. Theory10 (2016), no. 2, 379-399. · Zbl 1332.30077
[20] N.Faustino, A note on the discrete Cauchy-Kovalevskaya extension, Math. Methods Appl. Sci.42 (2019), no. 4, 1312-1320. · Zbl 1415.30030
[21] N.Faustino, Relativistic wave equations on the lattice: an operational perspective, topics in Clifford analysis, Springer, 2019, pp. 439-469. · Zbl 1451.39004
[22] N.Faustino, Time‐changed Dirac-Fokker-Planck equations on the lattice, J. Fourier Anal. Appl.26 (2020), 1-31. · Zbl 1441.30073
[23] N.Faustino and U.Kaehler, Fischer decomposition for difference Dirac operators, Adv. Appl. Clifford Algebr.17 (2007), no. 1, 37-58. · Zbl 1116.15023
[24] N.Faustino, U.Kähler, and F.Sommen, Discrete Dirac operators in Clifford analysis, Adv. Appl. Clifford Algebr.17 (2007), no. 3, 451-467. · Zbl 1208.30046
[25] N.Faustino et al., Difference potentials for the Navier-Stokes equations in unbounded domains, J. Differ. Equ. Appl.12 (2006), no. 6, 577-595. · Zbl 1092.76043
[26] M.Ferreira and N.Vieira, Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators: the Riemann-Liouville case, Complex Anal. Oper. Theory10 (2016), no. 5, 1081-1100. · Zbl 1342.35434
[27] M.Ferreira and N.Vieira, Fundamental solutions of the time fractional diffusion‐wave and parabolic Dirac operators, J. Math. Anal. Appl.447 (2017), no. 1, 329-353. · Zbl 1353.35008
[28] J.González‐Camus, C.Lizama, and P. J.Miana, Fundamental solutions for semidiscrete evolution equations via Banach algebras, Adv. Differ. Equ.2021 (2021), no. 1, 1-32. · Zbl 1485.35384
[29] K.Gürlebeck and W.Sprössig, Quaternionic and Clifford calculus for physicists and engineers, vol. 1, John Wiley & Sons, 1997. · Zbl 0897.30023
[30] T.Hytönen, J.Van Neerven, M.Veraar, and L.Weis, Analysis in Banach spaces: Vol. I: Martingales and Littlewood-Paley theory, vol. 63, Springer, 2016. · Zbl 1366.46001
[31] I.Kanamori and N.Kawamoto, Dirac-Kaehler fermion from Clifford product with noncommutative differential form on a lattice, Int. J. Mod. Phys. A19 (2004), no. 05, 695-736. · Zbl 1080.81535
[32] V.Keyantuo and C.Lizama, On a connection between powers of operators and fractional cauchy problems, J. Evol. Equ.12 (2012), no. 2, 245-265. · Zbl 1336.47046
[33] J.Kogut and L.Susskind, Hamiltonian formulation of Wilson’s lattice gauge theories, Phys. Rev. D11 (1975), no. 2, 395.
[34] V. V.Kulish and J. L.Lage, Application of fractional calculus to fluid mechanics, J. Fluids Eng.124 (2002), no. 3, 803-806.
[35] J.‐M.Lévy‐Leblond, Nonrelativistic particles and wave equations, Commun. Math. Phys.6 (1967), no. 4, 286-311. · Zbl 0154.46004
[36] C.Lizama and L.Roncal, Hölder-Lebesgue regularity and almost periodicity for semidiscrete equations with a fractional Laplacian, Discrete Contin. Dyn. Syst.38 (2018), no. 3, 1365-1403. · Zbl 1397.34034
[37] F.Mainardi, Y.Luchko, and G.Pagnini, The fundamental solution of space‐time fractional diffusion equation, Fract. Calc. Appl. Anal.4 (2001), no. 2, 153-192. · Zbl 1054.35156
[38] M. M.Meerschaert and A.Sikorskii, Stochastic models for fractional calculus, de Gruyter, 2019. · Zbl 1490.60004
[39] A.Prudnikov, Y. A.Brychkov, and O. I.Marichev, Integrals and series, volume 1: Elementary functions, Gordon & Breach Sci. Publ., New York, 1986. · Zbl 0606.33001
[40] J. M.Rabin, Homology theory of lattice fermion doubling, Nucl. Phys. B201 (1982), no. 2, 315-332.
[41] N. J.Rodrigues Faustino, A conformal group approach to the Dirac-Kähler system on the lattice, Math. Methods Appl. Sci.40 (2017), no. 11, 4118-4127. · Zbl 1371.30043
[42] M.Ruzhansky and V.Turunen, Pseudo‐differential operators and symmetries: background analysis and advanced topics, vol. 2, Springer Science & Business Media, 2009.
[43] S. G.Samko, A. A.Kilbas, and O. I.Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach Science Publishers, Philadelphia, PA, 1993. · Zbl 0818.26003
[44] V.Sushch, A discrete model of the Dirac-Kähler equation, Rep. Math. Phys.73 (2014), no. 1, 109-125. · Zbl 1288.81037
[45] J.Vaz Jr and R.daRocha Jr, An introduction to Clifford algebras and spinors, Oxford University Press, 2016. · Zbl 1347.15001
[46] Y.Zhou and L.Peng, On the time‐fractional Navier-Stokes equations, Comput. Math. Appl.73 (2017), no. 6, 874-891. · Zbl 1409.76027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.