×

Brownian subordinators and fractional Cauchy problems. (English) Zbl 1186.60079

The authors establish a connection between two seemingly disparate classes of subordinated stochastic processes and their govering equations.
More precisely, let \(X_0(t)\) be continuous Markov process and \(L_x\) its generator. Let be \(Y\) an independent Brownian motion and set \(Z_t= X(Y_t)\), where \(X\) is the two-sided pocess defined by \(X(t)= X_0(t)\), for \(t\geq 0\), and \(X(t)= X_1(-1)\), for \(t< 0\), with \(X_1\) an independent copy of \(X_0\).
It is known since [H. Allouba and W. Zheng, Ann. Probab. 29, No .4, 1780–1795 (2001; Zbl 1018.60066)] that \(u(t,x)= E[f(Z_t)|Z_0= x]\) solves the following initial value problem \[ {\partial\over\partial t} u(t,x)= {L_xf(x)\over \sqrt{\pi t}}+ L^2_x u(t,x);\;u(0,x)= f(x).\tag{1} \] Further, for \(\beta\in (0,1)\), let \(E_t= \text{inf}\{x> 0; D(x)> t\}\), where \(D\) is a stable subordinate independent of \(X_0\), with \(E[e^{-sD_t}]= e^{-ts^\beta}\). The subordinated process \(Z_t= x+ X_0(E_t)\) occurs as the scaling limit of a continuous time random walk [M. M. Meerschaert and H.-P. Scheffler, J. Appl. Probab. 41, No. 3, 623–638 (2004; Zbl 1065.60042)]. Furthermore \(u(t,x)= E[f(Z_t)|Z_0= x]\) satisfies the fractional Cauchy problem \[ {\partial^\beta\over\partial t^\beta} u(t,x)= L_x u(t,x);\;u(0,x)= f(x).\tag{2} \] The main result of this paper states that, for \(\beta={1\over 2}\), the two equations (1) and (2) have the same solution.

MSC:

60J65 Brownian motion
60J60 Diffusion processes
26A33 Fractional derivatives and integrals

References:

[1] Hassan Allouba, Brownian-time processes: the PDE connection. II. And the corresponding Feynman-Kac formula, Trans. Amer. Math. Soc. 354 (2002), no. 11, 4627 – 4637. · Zbl 1006.60063
[2] Hassan Allouba and Weian Zheng, Brownian-time processes: the PDE connection and the half-derivative generator, Ann. Probab. 29 (2001), no. 4, 1780 – 1795. · Zbl 1018.60066 · doi:10.1214/aop/1015345772
[3] David Applebaum, Lévy processes and stochastic calculus, Cambridge Studies in Advanced Mathematics, vol. 93, Cambridge University Press, Cambridge, 2004. · Zbl 1073.60002
[4] Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, and Frank Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, vol. 96, Birkhäuser Verlag, Basel, 2001. · Zbl 0978.34001
[5] L.J.B. Bachelier (1900) Théorie de la Spéculation. Gauthier-Villars, Paris. · JFM 31.0241.02
[6] Emilia Grigorova Bajlekova, Fractional evolution equations in Banach spaces, Eindhoven University of Technology, Eindhoven, 2001. Dissertation, Technische Universiteit Eindhoven, Eindhoven, 2001.
[7] Martin T. Barlow, Random walks and diffusions on fractals, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 1025 – 1035. · Zbl 0751.60073
[8] Martin T. Barlow and Richard F. Bass, Coupling and Harnack inequalities for Sierpiński carpets, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 208 – 212. · Zbl 0782.60017
[9] Martin T. Barlow and Edwin A. Perkins, Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields 79 (1988), no. 4, 543 – 623. · Zbl 0635.60090 · doi:10.1007/BF00318785
[10] Boris Baeumer and Mark M. Meerschaert, Stochastic solutions for fractional Cauchy problems, Fract. Calc. Appl. Anal. 4 (2001), no. 4, 481 – 500. · Zbl 1057.35102
[11] Rodrigo Bañuelos and Dante DeBlassie, The exit distribution of iterated Brownian motion in cones, Stochastic Process. Appl. 116 (2006), no. 1, 36 – 69. · Zbl 1085.60058 · doi:10.1016/j.spa.2005.07.003
[12] Peter Becker-Kern, Mark M. Meerschaert, and Hans-Peter Scheffler, Limit theorems for coupled continuous time random walks, Ann. Probab. 32 (2004), no. 1B, 730 – 756. · Zbl 1054.60052 · doi:10.1214/aop/1079021462
[13] D. Benson, S. Wheatcraft and M. Meerschaert (2000) Application of a fractional advection-dispersion equation. Water Resour. Res. 36, 1403-1412.
[14] D. Benson, S. Wheatcraft and M. Meerschaert (2000) The fractional-order governing equation of Lévy motion, Water Resources Research 36, 1413-1424.
[15] David A. Benson, Rina Schumer, Mark M. Meerschaert, and Stephen W. Wheatcraft, Fractional dispersion, Lévy motion, and the MADE tracer tests, Transp. Porous Media 42 (2001), no. 1-2, 211 – 240. · doi:10.1023/A:1006733002131
[16] Jean Bertoin, Lévy processes, Cambridge Tracts in Mathematics, vol. 121, Cambridge University Press, Cambridge, 1996. · Zbl 0861.60003
[17] J. Bisquert (2003) Fractional Diffusion in the Multiple-Trapping Regime and Revision of the Equivalence with the Continuous-Time Random Walk. Physical Review Letters 91, No. 1, 602-605.
[18] Krzysztof Burdzy, Some path properties of iterated Brownian motion, Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992) Progr. Probab., vol. 33, Birkhäuser Boston, Boston, MA, 1993, pp. 67 – 87. · Zbl 0789.60060 · doi:10.1007/978-1-4612-0339-1_3
[19] Krzysztof Burdzy, Variation of iterated Brownian motion, Measure-valued processes, stochastic partial differential equations, and interacting systems (Montreal, PQ, 1992) CRM Proc. Lecture Notes, vol. 5, Amer. Math. Soc., Providence, RI, 1994, pp. 35 – 53. · Zbl 0803.60077
[20] Krzysztof Burdzy and Davar Khoshnevisan, The level sets of iterated Brownian motion, Séminaire de Probabilités, XXIX, Lecture Notes in Math., vol. 1613, Springer, Berlin, 1995, pp. 231 – 236. · Zbl 0853.60061 · doi:10.1007/BFb0094215
[21] Krzysztof Burdzy and Davar Khoshnevisan, Brownian motion in a Brownian crack, Ann. Appl. Probab. 8 (1998), no. 3, 708 – 748. · Zbl 0937.60081 · doi:10.1214/aoap/1028903448
[22] E. Csáki, M. Csörgő, A. Földes, and P. Révész, The local time of iterated Brownian motion, J. Theoret. Probab. 9 (1996), no. 3, 717 – 743. · Zbl 0857.60081 · doi:10.1007/BF02214084
[23] R. Dante DeBlassie, Iterated Brownian motion in an open set, Ann. Appl. Probab. 14 (2004), no. 3, 1529 – 1558. · Zbl 1051.60082 · doi:10.1214/105051604000000404
[24] Albert Einstein, Investigations on the theory of the Brownian movement, Dover Publications, Inc., New York, 1956. Edited with notes by R. Fürth; Translated by A. D. Cowper. · Zbl 0071.41205
[25] L. R. G. Fontes, M. Isopi, and C. M. Newman, Random walks with strongly inhomogeneous rates and singular diffusions: convergence, localization and aging in one dimension, Ann. Probab. 30 (2002), no. 2, 579 – 604. · Zbl 1015.60099 · doi:10.1214/aop/1023481003
[26] Tadahisa Funaki, Probabilistic construction of the solution of some higher order parabolic differential equation, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 5, 176 – 179. · Zbl 0433.35039
[27] Rudolf Gorenflo, Francesco Mainardi, Enrico Scalas, and Marco Raberto, Fractional calculus and continuous-time finance. III. The diffusion limit, Mathematical finance (Konstanz, 2000) Trends Math., Birkhäuser, Basel, 2001, pp. 171 – 180. · Zbl 1138.91444
[28] Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957. rev. ed. · Zbl 0078.10004
[29] Yueyun Hu, Hausdorff and packing measures of the level sets of iterated Brownian motion, J. Theoret. Probab. 12 (1999), no. 2, 313 – 346. · Zbl 0935.60066 · doi:10.1023/A:1021669809625
[30] Y. Hu, D. Pierre-Loti-Viaud, and Z. Shi, Laws of the iterated logarithm for iterated Wiener processes, J. Theoret. Probab. 8 (1995), no. 2, 303 – 319. · Zbl 0816.60027 · doi:10.1007/BF02212881
[31] Niels Jacob, Pseudo-differential operators and Markov processes, Mathematical Research, vol. 94, Akademie Verlag, Berlin, 1996. · Zbl 0860.60002
[32] Niels Jacob, Characteristic functions and symbols in the theory of Feller processes, Potential Anal. 8 (1998), no. 1, 61 – 68. · Zbl 0908.60041 · doi:10.1023/A:1017983112289
[33] Niels Jacob and René L. Schilling, Lévy-type processes and pseudodifferential operators, Lévy processes, Birkhäuser Boston, Boston, MA, 2001, pp. 139 – 168. · Zbl 0984.60054
[34] Zbigniew J. Jurek and J. David Mason, Operator-limit distributions in probability theory, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1993. A Wiley-Interscience Publication. · Zbl 0850.60003
[35] Davar Khoshnevisan and Thomas M. Lewis, Stochastic calculus for Brownian motion on a Brownian fracture, Ann. Appl. Probab. 9 (1999), no. 3, 629 – 667. · Zbl 0956.60054 · doi:10.1214/aoap/1029962807
[36] Davar Khoshnevisan and Thomas M. Lewis, Chung’s law of the iterated logarithm for iterated Brownian motion, Ann. Inst. H. Poincaré Probab. Statist. 32 (1996), no. 3, 349 – 359 (English, with English and French summaries). · Zbl 0859.60025
[37] Mark M. Meerschaert and Hans-Peter Scheffler, Limit distributions for sums of independent random vectors, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 2001. Heavy tails in theory and practice. · Zbl 0990.60003
[38] Mark M. Meerschaert, David A. Benson, Hans-Peter Scheffler, and Boris Baeumer, Stochastic solution of space-time fractional diffusion equations, Phys. Rev. E (3) 65 (2002), no. 4, 041103, 4. · Zbl 1244.60080 · doi:10.1103/PhysRevE.65.041103
[39] M.M. Meerschaert, D.A. Benson, H.P. Scheffler and P. Becker-Kern (2002) Governing equations and solutions of anomalous random walk limits. Phys. Rev. E 66, 102R-105R.
[40] Mark M. Meerschaert and Hans-Peter Scheffler, Limit theorems for continuous-time random walks with infinite mean waiting times, J. Appl. Probab. 41 (2004), no. 3, 623 – 638. · Zbl 1065.60042
[41] Mark M. Meerschaert and Hans-Peter Scheffler, Stochastic model for ultraslow diffusion, Stochastic Process. Appl. 116 (2006), no. 9, 1215 – 1235. · Zbl 1100.60024 · doi:10.1016/j.spa.2006.01.006
[42] Mark M. Meerschaert and Enrico Scalas, Coupled continuous time random walks in finance, Phys. A 370 (2006), no. 1, 114 – 118. · doi:10.1016/j.physa.2006.04.034
[43] Ralf Metzler and Joseph Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 77. · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[44] Ralf Metzler and Joseph Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A 37 (2004), no. 31, R161 – R208. · Zbl 1075.82018 · doi:10.1088/0305-4470/37/31/R01
[45] Erkan Nane, Iterated Brownian motion in parabola-shaped domains, Potential Anal. 24 (2006), no. 2, 105 – 123. · Zbl 1090.60071 · doi:10.1007/s11118-005-2611-9
[46] Erkan Nane, Iterated Brownian motion in bounded domains in \Bbb R\(^{n}\), Stochastic Process. Appl. 116 (2006), no. 6, 905 – 916. · Zbl 1106.60309 · doi:10.1016/j.spa.2005.10.007
[47] Erkan Nane, Higher order PDE’s and iterated processes, Trans. Amer. Math. Soc. 360 (2008), no. 5, 2681 – 2692. · Zbl 1157.60071
[48] Erkan Nane, Laws of the iterated logarithm for \?-time Brownian motion, Electron. J. Probab. 11 (2006), no. 18, 434 – 459. · Zbl 1121.60085 · doi:10.1214/EJP.v11-327
[49] Erkan Nane, Isoperimetric-type inequalities for iterated Brownian motion in \Bbb R\(^{n}\), Statist. Probab. Lett. 78 (2008), no. 1, 90 – 95. · Zbl 1134.60051 · doi:10.1016/j.spl.2007.05.007
[50] Erkan Nane, Lifetime asymptotics of iterated Brownian motion in \Bbb R\(^{n}\), ESAIM Probab. Stat. 11 (2007), 147 – 160. · Zbl 1181.60127 · doi:10.1051/ps:2007012
[51] Enzo Orsingher and Luisa Beghin, Time-fractional telegraph equations and telegraph processes with Brownian time, Probab. Theory Related Fields 128 (2004), no. 1, 141 – 160. · Zbl 1049.60062 · doi:10.1007/s00440-003-0309-8
[52] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. · Zbl 0516.47023
[53] T. Prosen and M. Znidaric (2001) Anomalous diffusion and dynamical localization in polygonal billiards. Phys. Rev. Lett. 87, 114101-114104.
[54] Walter Rudin, Functional analysis, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. · Zbl 0253.46001
[55] Gennady Samorodnitsky and Murad S. Taqqu, Stable non-Gaussian random processes, Stochastic Modeling, Chapman & Hall, New York, 1994. Stochastic models with infinite variance. · Zbl 0925.60027
[56] Ken-iti Sato, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999. Translated from the 1990 Japanese original; Revised by the author. · Zbl 0973.60001
[57] E. Scalas (2004) Five Years of Continuous-Time Random Walks in Econophysics. Proceedings of WEHIA 2004, A. Namatame , Kyoto. · Zbl 1183.91135
[58] René L. Schilling, Growth and Hölder conditions for the sample paths of Feller processes, Probab. Theory Related Fields 112 (1998), no. 4, 565 – 611. · Zbl 0930.60013 · doi:10.1007/s004400050201
[59] R. Schumer, D.A. Benson, M.M. Meerschaert and S. W. Wheatcraft (2001) Eulerian derivation of the fractional advection-dispersion equation. J. Contaminant Hydrol., 48, 69-88.
[60] Zh. Shi and M. Yor, Integrability and lower limits of the local time of iterated Brownian motion, Studia Sci. Math. Hungar. 33 (1997), no. 1-3, 279 – 298. · Zbl 0909.60068
[61] Michael F. Shlesinger, Joseph Klafter, and Y. M. Wong, Random walks with infinite spatial and temporal moments, J. Statist. Phys. 27 (1982), no. 3, 499 – 512. · Zbl 0521.60080 · doi:10.1007/BF01011089
[62] Ya. G. Sinaĭ, The limit behavior of a one-dimensional random walk in a random environment, Teor. Veroyatnost. i Primenen. 27 (1982), no. 2, 247 – 258 (Russian, with English summary).
[63] I. M. Sokolov and J. Klafter, From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion, Chaos 15 (2005), no. 2, 026103, 7. · Zbl 1080.82022 · doi:10.1063/1.1860472
[64] Yimin Xiao, Local times and related properties of multidimensional iterated Brownian motion, J. Theoret. Probab. 11 (1998), no. 2, 383 – 408. · Zbl 0914.60063 · doi:10.1023/A:1022679721638
[65] G. M. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos, Phys. D 76 (1994), no. 1-3, 110 – 122. Chaotic advection, tracer dynamics and turbulent dispersion (Gavi, 1993). · Zbl 1194.37163 · doi:10.1016/0167-2789(94)90254-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.