×

Chance-constrained games with mixture distributions. (English) Zbl 1480.91009

Summary: In this paper, we consider an \(n\)-player non-cooperative game where the random payoff function of each player is defined by its expected value and her strategy set is defined by a joint chance constraint. The random constraint vectors are independent. We consider the case when the probability distribution of each random constraint vector belongs to a subset of elliptical distributions as well as the case when it is a finite mixture of the probability distributions from the subset. We propose a convex reformulation of the joint chance constraint of each player and derive the bounds for players’ confidence levels and the weights used in the mixture distributions. Under mild conditions on the players’ payoff functions, we show that there exists a Nash equilibrium of the game when the players’ confidence levels and the weights used in the mixture distributions are within the derived bounds. As an application of these games, we consider the competition between two investment firms on the same set of portfolios. We use a best response algorithm to compute the Nash equilibria of the randomly generated games of different sizes.

MSC:

91A10 Noncooperative games
91A11 Equilibrium refinements
91A68 Algorithmic game theory and complexity

Software:

QRM

References:

[1] Basar, T.; Olsder, GJ, Dynamic noncooperative game theory (1999), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 0946.91001
[2] Blau, RA, Random-payoff two person zero-sum games, Op Res, 22, 6, 1243-1251 (1974) · Zbl 0306.90087 · doi:10.1287/opre.22.6.1243
[3] Buckley, I.; Saunders, D.; Seco, L., Portfolio optimization when asset returns have the Gaussian mixture distribution, Euro J Op Res, 185, 1434-1461 (2008) · Zbl 1149.90084 · doi:10.1016/j.ejor.2005.03.080
[4] Cassidy, RG; Field, CA; Kirby, MJL, Solution of a satisficing model for random payoff games, Manag Sci, 19, 3, 266-271 (1972) · Zbl 0262.90073 · doi:10.1287/mnsc.19.3.266
[5] Charnes, A.; Kirby, MJL; Raike, WM, Zero-zero chance-constrained games. Theory Prob Appl, 13, 4, 628-646 (1968)
[6] Cheng, J.; Leung, J.; Lisser, A., Random-payoff two-person zero-sum game with joint chance constraints, Euro J Op Res, 251, 1, 213-219 (2016) · Zbl 1346.91004 · doi:10.1016/j.ejor.2015.12.024
[7] Cheng, J.; Lisser, A., A second-order cone programming approach for linear programs with joint probabilistic constraints, Op Res Lett, 40, 5, 325-328 (2012) · Zbl 1250.90060 · doi:10.1016/j.orl.2012.06.008
[8] Conejo, AJ; Nogales, FJ; Arroyo, JM; García-Bertrand, R., Risk-constrained self-scheduling of a thermal power producer, IEEE Trans Power Syst, 19, 3, 1569-1574 (2004) · doi:10.1109/TPWRS.2004.831652
[9] Couchman, P.; Kouvaritakis, B.; Cannon, M.; Prashad, F., Gaming strategy for electric power with random demand, IEEE Trans Power Syst, 20, 3, 1283-1292 (2005) · doi:10.1109/TPWRS.2005.851954
[10] Debreu, G., A social equilibrium existence theorem, Proceedings of National Academy of Sciences, 38, 886-893 (1952) · Zbl 0047.38804 · doi:10.1073/pnas.38.10.886
[11] Durand S, Garin F, Gaujal B (2018) Distributed best response algorithms for potential games European Control Conference 2170-2175
[12] Fabrikant A, Papadimitriou Ch, Talwar K (2004) The complexity of pure Nash equilibria. STOC, 604-612 · Zbl 1192.91042
[13] Fan, K., Applications of a theorem concerning sets with convex sections, Mathematische Annalen, 163, 189-203 (1966) · Zbl 0138.37401 · doi:10.1007/BF02052284
[14] Fang, KT; Kotz, S.; Ng, KW, Symmetric multivariate and related distributions (1990), London, New York: Chapman and Hall, London, New York · Zbl 0699.62048 · doi:10.1007/978-1-4899-2937-2
[15] Giacomini, R.; Gottschling, A.; Haefke, C.; White, H., Mixtures of t-distributions for finance and forecasting, J Econ, 144, 175-192 (2008) · Zbl 1418.62380 · doi:10.1016/j.jeconom.2008.01.004
[16] Henrion, R., Structural properties of linear probabilistic constraints, Optimization, 56, 4, 425-440 (2007) · Zbl 1149.90110 · doi:10.1080/02331930701421046
[17] Henrion, R.; Strugarek, C., Convexity of chance constraints with independent random variables, Comp Optim Appl, 41, 2, 263-276 (2008) · Zbl 1168.90568 · doi:10.1007/s10589-007-9105-1
[18] Kamdem, JS, Value-at-risk and expected shortfall for linear portfolios with elliptically distributed risk factors, Int J Theor Appl Finan, 8, 537-551 (2005) · Zbl 1138.91453 · doi:10.1142/S0219024905003104
[19] Kamdem, JS, \( \Delta \)- Va R and \(\Delta \)- TVa R for portfolios with mixture of elliptic distributions risk factors and DCC, Insurance Math Econ, 44, 325-336 (2009) · Zbl 1162.91379 · doi:10.1016/j.insmatheco.2008.11.013
[20] Kannan, A.; Shanbhag, UV; Kim, HM, Addressing supply-side risk in uncertain power markets: stochastic Nash models, scalable algorithms and error analysis, Optim Methods Softw, 28, 5, 1095-1138 (2013) · Zbl 1278.91077 · doi:10.1080/10556788.2012.676756
[21] Kociński M (2014) Transaction costs and market impact in investment management. e-Finanse Financial Internet Quarterly 10: 28-35
[22] Lampariello L, Neumann C, Ricci J, Sagratella S, Stein O (2021) Equilibrium selection for multi-portfolio optimization. Euro J Op Res · Zbl 1487.91120
[23] Liu, J.; Lisser, A.; Chen, Z., Stochastic geometric optimization with joint probabilistic constraints, Op Res Lett, 44, 687-691 (2016) · Zbl 1408.90212 · doi:10.1016/j.orl.2016.08.002
[24] Liu, Y.; Xu, H.; Yang, SJS; Zhang, J., Distributionally robust equilibrium forcontinuous games: Nash and Stackelberg models, Eur J Oper Res, 265, 631-643 (2018) · Zbl 1376.91039 · doi:10.1016/j.ejor.2017.07.050
[25] Lobo, MS; Fazel, M.; Boyd, S., Portfolio optimization with linear and fixed transaction costs, Annal Op Res, 152, 341-365 (2007) · Zbl 1132.91474 · doi:10.1007/s10479-006-0145-1
[26] McNeil, AJ; Frey, R.; Embrechts, P., Quantitative risk management: concepts, techniques and tools (2005), Princeton, Oxford: Princeton University Press, Princeton, Oxford · Zbl 1089.91037
[27] Mazadi, M.; Rosehart, WD; Zareipour, H.; Malik, OP; Oloomi, M., Impact of wind integration on electricity markets: a chance-constrained Nash Cournot model, Int Trans Electr Energy Syst, 23, 1, 83-96 (2013) · doi:10.1002/etep.650
[28] Monderer, D.; Shapley, L., Potential games, Games Econ Behav, 14, 124-143 (1996) · Zbl 0862.90137 · doi:10.1006/game.1996.0044
[29] Markowitz, H., Portfolio selection. J Finan, 7, 1, 77-91 (1952)
[30] Nash, JF, Equilibrium points in n-person games, Proceedings of the National Academy of Sciences, 36, 1, 48-49 (1950) · Zbl 0036.01104 · doi:10.1073/pnas.36.1.48
[31] Peng, S.; Singh, VV; Lisser, A., General sum games with joint chance constraints, Op Res Lett, 56, 482-486 (2018) · Zbl 1476.91009 · doi:10.1016/j.orl.2018.07.003
[32] Peng, S.; Lisser, A.; Singh, VV; Gupta, N.; Balachandar, E., Games with distributionally robust joint chance constraints, Optim Lett (2021) · Zbl 1471.91012 · doi:10.1007/s11590-021-01700-9
[33] Ravat, U.; Shanbhag, UV, On the characterization of solution sets of smooth and nonsmooth convex stochastic Nash games, SIAM J Optim, 21, 3, 1168-1199 (2011) · Zbl 1235.90109 · doi:10.1137/100792644
[34] Singh, VV; Jouini, O.; Lisser, A., Existence of Nash equilibrium for chance-constrained games, Op Res Lett, 44, 5, 640-644 (2016) · Zbl 1408.91027 · doi:10.1016/j.orl.2016.07.013
[35] Singh, VV; Lisser, A., A characterization of Nash equilibrium for the games with random payoffs, J Optim Theory Appl, 178, 3, 998-1013 (2018) · Zbl 1419.91027 · doi:10.1007/s10957-018-1343-0
[36] Singh, VV; Lisser, A., A second order cone programming formulation for zero sum game with chance constraints, Euro J Op Res, 275, 839-845 (2019) · Zbl 1431.91006 · doi:10.1016/j.ejor.2019.01.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.