×

Family of mean-mixtures of multivariate normal distributions: properties, inference and assessment of multivariate skewness. (English) Zbl 1461.62076

Summary: In this paper, a new mixture family of multivariate normal distributions, formed by mixing multivariate normal distribution and a skewed distribution, is constructed. Some properties of this family, such as characteristic function, moment generating function, and the first four moments are derived. The distributions of affine transformations and canonical forms of the model are also derived. An EM-type algorithm is developed for the maximum likelihood estimation of model parameters. Some special cases of the family, using standard gamma and standard exponential mixture distributions, denoted by \(\mathcal{MMNG}\) and \(\mathcal{MMNE}\), respectively, are considered. For the proposed family of distributions, different multivariate measures of skewness are computed. In order to examine the performance of the developed estimation method, some simulation studies are carried out to show that the maximum likelihood estimates do provide a good performance. For different choices of parameters of \(\mathcal{MMNE}\) distribution, several multivariate measures of skewness are computed and compared. Because some measures of skewness are scalar and some are vectors, in order to evaluate them properly, a simulation study is carried out to determine the power of tests, based on sample versions of skewness measures as test statistics for testing the fit of the \(\mathcal{MMNE}\) distribution. Finally, two real data sets are used to illustrate the usefulness of the proposed model and the associated inferential methods.

MSC:

62H15 Hypothesis testing in multivariate analysis
62H10 Multivariate distribution of statistics
62H12 Estimation in multivariate analysis
60E07 Infinitely divisible distributions; stable distributions
60E10 Characteristic functions; other transforms

Software:

sn

References:

[1] Adcock, C. J., Mean-variance-skewness efficient surfaces, Stein’s lemma and the multivariate extended skew-student distribution, Eur. J. Oper. Res., 234, 392-401 (2014) · Zbl 1304.91174
[2] Adcock, C. J.; Eling, M.; Loperfido, N., Skewed distributions in finance and actuarial science: A review, Eur. J. Finance, 21, 1253-1281 (2015)
[3] Adcock, C. J.; Shutes, K., On the multivariate extended skew-normal, normal-exponential and normal-gamma distributions, J. Stat. Theory Pract., 6, 636-664 (2012) · Zbl 1425.62027
[4] M.Y. An, Log-concave probability distributions: Theory and statistical testing, in: Working Paper 96-01, CLS, Science Park Aarhus, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark, 1996.
[5] Arellano-Valle, R. B.; Azzalini, A., On the unification of families of skew-normal distributions, Scand. J. Stat., 33, 561-574 (2006) · Zbl 1117.62051
[6] Azzalini, A., A class of distributions which includes the normal ones, Scand. J. Stat., 2, 171-178 (1985) · Zbl 0581.62014
[7] Azzalini, A., Further results on a class of distributions which includes the normal ones, Statistica, 46, 199-208 (1986) · Zbl 0606.62013
[8] Azzalini, A., The skew-normal distribution and related multivariate families, Scand. J. Stat., 32, 159-188 (2005) · Zbl 1091.62046
[9] Azzalini, A.; Capitanio, A., The Skew-Normal and Related Families (2014), Cambridge University Press: Cambridge University Press Cambridge, England · Zbl 0924.62050
[10] Azzalini, A.; Dalla Valle, A., The multivariate skew-normal distribution, Biometrika, 83, 715-726 (1996) · Zbl 0885.62062
[11] Balakrishnan, N.; Brito, M. R.; Quiroz, A. J., A vectorial notion of skewness and its use in testing for multivariate symmetry, Comm. Statist. Theory Methods, 36, 1757-1767 (2007) · Zbl 1315.62052
[12] Balakrishnan, N.; Capitanio, A.; Scarpa, B., A test for multivariate skew-normality based on its canonical form, J. Multivariate Anal., 128, 19-32 (2014) · Zbl 1352.62084
[13] Balakrishnan, N.; Scarpa, B., Multivariate measures of skewness for the skew-normal distribution, J. Multivariate Anal., 104, 73-87 (2012) · Zbl 1226.60020
[14] Barndorff-Nielsen, O.; Kent, J.; Sørensen, M., Normal variance-mean mixtures and z distributions, Internat. Statist. Rev., 50, 145-159 (1982) · Zbl 0497.62019
[15] Bernardi, M.; Cerqueti, R.; Palestini, A., The skew normal multivariate risk measurement framework, Comput. Manag. Sci., 17, 105-119 (2020) · Zbl 07205160
[16] Bose, A.; Dasgupta, A.; Rubin, H., A contemporary review and bibliography of infinitely divisible distributions and processes, Sankhyā A, 64, 763-819 (2002) · Zbl 1192.60036
[17] Cook, R. D.; Weisberg, S., An Introduction To Regression Graphics (1994), Wiley: Wiley New York · Zbl 0925.62287
[18] Eling, M., Performance measurement in the investment industry, Financ. Anal. J., 64, 54-66 (2008)
[19] Fang, K. T.; Kotz, S.; Ng, K. W., Symmetric Multivariate and Related Distributions (1990), Chapman and Hall: Chapman and Hall London, England · Zbl 0699.62048
[20] Franceschini, C.; Loperfido, N., and , two R packages for detecting, measuring and removing multivariate skewness, Symmetry, 11, 8, 970 (2019)
[21] Fung, W.; Hsieh, D. A., Performance characteristics of hedge funds and commodity funds: Natural vs. spurious biases, J. Financ. Quant. Anal., 35, 291-307 (2000)
[22] Genton, M. G.; He, L.; Liu, X., Moments of skew-normal random vectors and their quadratic forms, Statist. Probab. Lett., 51, 319-325 (2001) · Zbl 0972.62031
[23] Graham, A., Kronecker Products and Matrix Calculus: With Applications (1981), Halsted Press: Halsted Press New York · Zbl 0497.26005
[24] Henze, N., Limit laws for multivariate skewness in the sense of Móri, Rohatgi, Székely, Statist. Probab. Lett., 33, 299-307 (1997) · Zbl 0902.62060
[25] Isogai, T., On a measure of multivariate skewness and a test for multivariate normality, Ann. Inst. Statist. Math., 34, 531-541 (1982) · Zbl 0515.62054
[26] Kim, H. M.; Zhao, J., Multivariate measures of skewness for the scale mixtures of skew-normal distributions, Commun. Stat. Appl. Methods, 25, 109-130 (2018)
[27] Kollo, T., Multivariate skewness and kurtosis measures with an application in ICA, J. Multivariate Anal., 99, 2328-2338 (2008) · Zbl 1294.62021
[28] Kollo, T.; von Rosen, D., Advanced Multivariate Statistics with Matrices (2005), Springer, Dordrecht: Springer, Dordrecht The Netherlands · Zbl 1079.62059
[29] Kollo, T.; Srivastava, M. S., Estimation and testing of parameters in multivariate Laplace distribution, Comm. Statist. Theory Methods, 33, 2363-2387 (2004) · Zbl 1217.62080
[30] Liu, C.; Rubin, D. B., The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence, Biometrika, 81, 633-648 (1994) · Zbl 0812.62028
[31] Loperfido, N., Skewness-based projection pursuit: A computational approach, Comput. Statist. Data Anal., 120, 42-57 (2018) · Zbl 1469.62111
[32] Malkovich, J. F.; Afifi, A. A., On tests for multivariate normality, J. Amer. Statist. Assoc., 68, 176-179 (1973)
[33] Mardia, K. V., Measures of multivariate skewness and kurtosis with applications, Biometrika, 36, 519-530 (1970) · Zbl 0214.46302
[34] Mardia, K. V., Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies, Sankhyā B, 36, 115-128 (1974) · Zbl 0345.62031
[35] Meng, X. L.; Rubin, D. B., Maximum likelihood estimation via the ECM algorithm: A general framework, Biometrika, 80, 267-278 (1993) · Zbl 0778.62022
[36] Móri, T. F.; Rohatgi, V. K.; Székely, G. J., On multivariate skewness and kurtosis, Theory Probab. Appl., 38, 547-551 (1993) · Zbl 0807.60020
[37] Negarestani, H.; Jamalizadeh, A.; Shafiei, S.; Balakrishnan, N., Mean mixtures of normal distributions: Properties, inference and application, Metrika, 82, 501-528 (2019) · Zbl 1481.60026
[38] Préekopa, A., On logarithmic concave measures and functions, Acta Sci. Math., 33, 335-343 (1973) · Zbl 0264.90038
[39] Schott, J. R., Matrix Analysis for Statistics (2016), John Wiley & Sons: John Wiley & Sons Hoboken, New Jersey
[40] Simaan, Y., Portfolio selection and asset pricing-three parameter framework, Manage. Sci., 39, 568-587 (1993) · Zbl 0783.90012
[41] Srivastava, M. S., A measure of skewness and kurtosis and a graphical method for assessing multivariate normality, Statist. Probab. Lett., 2, 263-267 (1984)
[42] Steutel, F. W.; Van Harn, K., Infinite Divisibility of Probability Distributions on the Real Line (2004), Marcel Dekker: Marcel Dekker New York · Zbl 1063.60001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.