×

Mean mixtures of normal distributions: properties, inference and application. (English) Zbl 1481.60026

Summary: The skew normal (SN) distribution of A. Azzalini [Scand. J. Stat. 12, 171–178 (1985; Zbl 0581.62014)] is one of the widely used probability distributions for modelling skewed data. In this article, we introduce a general class of skewed distributions based on mean mixtures of normal distributions, which includes the SN distribution as a special case. Some properties of this new class, such as expressions for mean, variance, skewness and kurtosis coefficients and characteristic function, are derived. Also, estimates of the model parameters are first obtained by the method of moments. Two special cases of this new class are studied in detail. It is shown that the range of skewness and kurtosis coefficients for the special cases is wider than that of the SN distribution, and in addition, unlike the SN distribution, one of these models is an infinitely divisible distribution. For carrying out the maximum likelihood (ML) estimation, an ECM algorithm is developed. This algorithm is analytically simple because closed-form expressions of conditional expectations in the E-step as well as the updating estimators in the CM-step are in explicit form. The observed information matrix is provided for approximating the asymptotic covariance matrix of the ML estimators of the parameters. The usefulness of the proposed distribution is illustrated through simulated as well as two real data sets. Next, a new extension of regression models is constructed by assuming the proposed distributions for the error term. Finally, a multivariate version of the proposed model is discussed.

MSC:

60E05 Probability distributions: general theory
62E10 Characterization and structure theory of statistical distributions
62F10 Point estimation
62J05 Linear regression; mixed models

Citations:

Zbl 0581.62014

Software:

sn; alr3; alr4
Full Text: DOI

References:

[1] Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716-723 · Zbl 0314.62039 · doi:10.1109/TAC.1974.1100705
[2] Arnold BC, Beaver RJ, Groeneveld RA, Meeker WQ (1993) The nontruncated marginal of a truncated bivariate normal distribution. Psychometrika 58:471-488 · Zbl 0794.62075 · doi:10.1007/BF02294652
[3] Arellano-Valle RB, Azzalini A (2006) On the unification of families of skew-normal distributions. Scand J Stat 33:561-574 · Zbl 1117.62051 · doi:10.1111/j.1467-9469.2006.00503.x
[4] Arslan O (2015) Variance-mean mixture of the multivariate skew normal distribution. Stat Pap 56:353-378 · Zbl 1309.62043 · doi:10.1007/s00362-014-0585-7
[5] Athayde E, Azevedo A, Barros M, Leiva V (2018) Failure rate of Birnbaum-Saunders distributions: shape, change-point, estimation and robustness. Braz J Probab Statist (to appear) · Zbl 1419.62025
[6] Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12:171-178 · Zbl 0581.62014
[7] Azzalini A (1986) Further results on a class of distributions which includes the normal ones. Statistica 46:199-208 · Zbl 0606.62013
[8] Azzalini A (2005) The skew-normal distribution and related multivariate families. Scand J Stat 32:159-188 · Zbl 1091.62046 · doi:10.1111/j.1467-9469.2005.00426.x
[9] Azzalini A, Capitanio A (1999) Statistical applications of the multivariate skew normal distribution. J R Stat Soc Ser B 61:579-602 · Zbl 0924.62050 · doi:10.1111/1467-9868.00194
[10] Azzalini A, Capitanio A (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J R Stat Soc Ser B 65:367-389 · Zbl 1065.62094 · doi:10.1111/1467-9868.00391
[11] Azzalini A, Capitanio A (2014) The skew-normal and related families. Cambridge University Press, Cambridge · Zbl 0924.62050
[12] Azzalini A, Dalla Valle A (1996) The multivariate skew-normal distribution. Biometrika 83:715-726 · Zbl 0885.62062 · doi:10.1093/biomet/83.4.715
[13] Barndorff-Nielsen O, Kent J, Sørensen M (1982) Normal variance-mean mixtures and z distributions. Int Stat Rev 50:145-159 · Zbl 0497.62019 · doi:10.2307/1402598
[14] Behboodian J, Jamalizadeh A, Balakrishnan N (2006) A new class of skew-Cauchy distributions. Stat Probab Lett 76:1488-1493 · Zbl 1096.60011 · doi:10.1016/j.spl.2006.03.008
[15] Branco MD, Dey DK (2001) A general class of multivariate skew-elliptical distributions. J Multivar Anal 79:99-113 · Zbl 0992.62047 · doi:10.1006/jmva.2000.1960
[16] Chandra NK, Roy D (2001) Some results on reverse hazard rate. Probab Eng Inf Sci 15:95-102 · Zbl 1087.62510 · doi:10.1017/S0269964801151077
[17] Dey S, Alzaatreh A, Zhang C, Kumar D (2017) A new extension of generalized exponential distribution with application to ozone data. Ozone Sci Eng 39:273-285 · doi:10.1080/01919512.2017.1308817
[18] Dominguez-Molina JA, Rocha-Artega A (2007) On the infinite divisibility of some skewed symmetric distributions. Stat Probab Lett 77:644-648 · Zbl 1120.60010 · doi:10.1016/j.spl.2006.09.014
[19] Gupta PL, Brown N (2001) Reliability studies of skew normal distribution and its application to a strength-stress model. Commun Stat-Theory Methods 30:2427-2445 · Zbl 1009.62513 · doi:10.1081/STA-100107696
[20] Gupta RC, Balakrishnan N (2012) Log-concavity and monotonicity of hazard and reversed hazard functions of univariate and multivariate skew-normal distributions. Metrika 75:181-191 · Zbl 1238.62013 · doi:10.1007/s00184-010-0321-9
[21] Henze N (1986) A probabilistic representation of the skew-normal distribution. Scand J Stat 13:271-275 · Zbl 0648.62016
[22] Jamalizadeh A, Lin TI (2017) A general class of scale-shape mixtures of skew-normal distributions: properties and estimation. Comput Stat 32:451-474 · Zbl 1417.62030 · doi:10.1007/s00180-016-0691-1
[23] Kalambet Y, Kozmin Y, Mikhailova K, Nagaev I, Tikhonov P (2011) Reconstruction of chromatographic peaks using the exponentially modified Gaussian function. J Chemom 25:352-356 · doi:10.1002/cem.1343
[24] Krupskii P, Huser R, Genton MG (2018) Factor copula models for replicated spatial data. J Am Stat Assoc 113:467-479 · Zbl 1398.62256 · doi:10.1080/01621459.2016.1261712
[25] Kozubowski TJ, Nolan JP (2008) Infinite divisibility of skew Gaussian and Laplace laws. Stat Probab Lett 78:654-660 · Zbl 1147.60008 · doi:10.1016/j.spl.2007.09.027
[26] Lee SX, McLachlan GJ (2013) On mixtures of skew-normal and skew \[t\] t-distributions. Adv Data Anal Classif 7:241-266 · Zbl 1273.62115 · doi:10.1007/s11634-013-0132-8
[27] Lin TI, Lee JC, Yen SY (2007) Finite mixture modelling using the skew normal distribution. Statistica Sinica 17:909-927 · Zbl 1133.62012
[28] Louis TA (1982) Finding the observed information when using the EM algorithm. J R Stat Soc Ser B 44:226-232 · Zbl 0488.62018
[29] Meng XL, Rubin DB (1993) Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80:267-278 · Zbl 0778.62022 · doi:10.1093/biomet/80.2.267
[30] Meng XL, Rubin DB (1991) Using EM to obtain asymptotic variance-covariance matrices: the SEM algorithm. J Am Stat Assoc 86:899-909 · doi:10.1080/01621459.1991.10475130
[31] Meeusen W, van den Broeck J (1977) Efficiency estimation from Cobb-Douglas production functions with composed error. Int Econ Rev 18:435-444 · Zbl 0366.90025 · doi:10.2307/2525757
[32] Nadarajah S, Kotz S (2003) Skewed distributions generated by the normal kernel. Stat Probab Lett 65:269-277 · Zbl 1048.62014 · doi:10.1016/j.spl.2003.07.013
[33] Sadreazami H, Omair Ahmad M, Swamy MNS (2016) A study on image denoising in contourlet domain using the alpha-stable family of distributions. Signal Process 128:459-473 · doi:10.1016/j.sigpro.2016.05.018
[34] Silver JD, Ritchie ME, Smyth GK (2009) Microarray background correction: maximum likelihood estimation for the normal-exponential convolution. Biostatistics 10:352-363 · Zbl 1437.62608 · doi:10.1093/biostatistics/kxn042
[35] Steutel FW, Van Harn K (2003) Infinite divisibility of probability distributions on the real line. Marcel Dekker, New York · Zbl 1063.60001 · doi:10.1201/9780203014127
[36] Vilca F, Santana L, Leiva V, Balakrishnan N (2011) Estimation of extreme percentiles in Birnbaum-Saunders distributions. Comput Stat Data Anal 55:1665-1678 · Zbl 1328.62141 · doi:10.1016/j.csda.2010.10.023
[37] Weisberg S (2014) Computing primer for applied linear regression, 4th edn, Using R. http://z.umn.edu/alrprimer · Zbl 1281.62015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.