×

The Einstein-Vlasov system/kinetic theory. (English) Zbl 1068.83505

Summary: The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein’s equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on nonrelativistic and special relativistic physics, i.e. to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically, and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (i.e. fluid models). This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to good comprehension of kinetic theory in general relativity.
Update to the author’s paper [Zbl 1024.83008]: Updated and extended article: Sections 1.3 and 2.3 added, extended reference list from previous 90 to 121.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory

Citations:

Zbl 1024.83008

References:

[1] Abikoff, W., The Real Analytic Theory of Teichmüller Space, vol. 820 of Lecture Notes in Mathematics, (Springer, Berlin, Germany; New York, U.S.A., 1980). · Zbl 0452.32015
[2] Achúcarro, A., and Townsend, P.K., ”A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories”, Phys. Lett. B, 180, 89–92, (1986). · doi:10.1016/0370-2693(86)90140-1
[3] Alekseev, A.Y., Grosse, H., and Schomerus, V., ”Combinatorial quantization of the Hamiltonian Chern-Simons theory I”, Commun. Math. Phys., 172, 317–358, (1995). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9403066. · Zbl 0842.58037 · doi:10.1007/BF02099431
[4] Alekseev, A.Y., Grosse, H., and Schomerus, V., ”Combinatorial Quantization of the Hamiltonian Chern-Simons Theory II”, Commun. Math. Phys., 174, 561–604, (1995). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9408097. · Zbl 0842.58038 · doi:10.1007/BF02101528
[5] Alekseev, A.Y., and Malkin, A.Z., Commun. Math. Phys., 169, 99, (1995). · Zbl 0829.53028 · doi:10.1007/BF02101598
[6] Amano, A., and Higuchi, S., ”Topology change in ISO(2,1) Chern-Simons gravity”, Nucl. Phys. B, 377, 218–235, (1992). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9201075. · doi:10.1016/0550-3213(92)90022-4
[7] Amano, K., and Higuchi, S., ”ISO(2,1) gauge fields and (2+1)-dimensional space-time”, Prog. Theor. Phys. Suppl., 110, 151, (1992). · Zbl 0834.53056 · doi:10.1143/PTPS.110.151
[8] Ambjørn, J., Carfora, M., and Marzuoli, A., The Geometry of Dynamical Triangulations, vol. m50 of Lecture Notes in Physics, (Springer, Berlin, Germany; New York, U.S.A., 1997). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9612069. · Zbl 0892.53033
[9] Ambjørn, J., Jurkiewicz, J., and Loll, R., ”A non-perturbative Lorentzian path integral for gravity”, Phys. Rev. Lett., 85, 924–927, (2000). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0002050. · Zbl 1101.83315 · doi:10.1103/PhysRevLett.85.924
[10] Ambjørn, J., Jurkiewicz, J., and Loll, R., ”Computer simulations of 3-d Lorentzian quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 94, 689–692, (2001). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-lat/0011055. · Zbl 0971.83022 · doi:10.1016/S0920-5632(01)00878-7
[11] Ambjørn, J., Jurkiewicz, J., and Loll, R., ”Lorentzian 3d Gravity with Wormholes via Matrix Models”, J. High Energy Phys., 09, 022, (2001). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0106082. · Zbl 0971.83022 · doi:10.1088/1126-6708/2001/09/022
[12] Ambjørn, J., Jurkiewicz, J., and Loll, R., ”Nonperturbative 3D Lorentzian quantum gravity”, Phys. Rev. D, 64, 044011-1–17, (2001). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0011276. · doi:10.1103/PhysRevD.64.044011
[13] Ambjørn, J., Jurkiewicz, J., and Loll, R., ”3d Lorentzian, dynamically triangulated quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 106, 980–982, (2002). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-lat/0201013. · doi:10.1016/S0920-5632(01)01904-1
[14] Ambjørn, J., Jurkiewicz, J., and Loll, R., ”Renormalization of 3d quantum gravity from matrix models”, Phys. Lett. B, 581, 255–262, (2004). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0307263. · Zbl 1246.83059 · doi:10.1016/j.physletb.2003.11.068
[15] Ambjørn, J., Jurkiewicz, J., Loll, R., and Vernizzi, G., ”3D Lorentzian Quantum Gravity from the asymmetric ABAB matrix model”, Acta Phys. Pol. B, 34, 4667–4688, (2003). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0311072.
[16] Ambjørn, J., and Loll, R., ”Non-perturbative Lorentzian Quantum Gravity, Causality and Topology Change”, Nucl. Phys. B, 536, 407–434, (1998). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9805108. · Zbl 0940.83004 · doi:10.1016/S0550-3213(98)00692-0
[17] Amelino-Camelia, G., ”Testable scenario for relativity with minimum length”, Phys. Lett. B, 510, 255–263, (2001). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/012238. · Zbl 1062.83540 · doi:10.1016/S0370-2693(01)00506-8
[18] Amelino-Camelia, G., Smolin, L., and Starodubtsev, A., ”Quantum symmetry, the cosmological constant and Planck scale phenomenology”, Class. Quantum Grav., 21, 3095–3110, (2004). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0306134. · Zbl 1061.83025 · doi:10.1088/0264-9381/21/13/002
[19] Anderson, M., Carlip, S., Ratcliffe, J.G., Surya, S., and Tschantz, S.T., ”Peaks in the Hartle-Hawking Wave Function from Sums over Topologies”, Class. Quantum Grav., 21, 729–742, (2004). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0310002. · Zbl 1045.83032 · doi:10.1088/0264-9381/21/2/025
[20] Andersson, L., Moncrief, V., and Tromba, A.J., ”On the global evolution problem in 2+1 gravity”, J. Geom. Phys., 23, 191, (1997). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9610013. · Zbl 0898.58003 · doi:10.1016/S0393-0440(97)87804-7
[21] Anselmi, D., ”Finiteness of quantum gravity coupled with matter in three spacetime dimensions”, Nucl. Phys. B, 687, 124–142, (2004). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0309250. · Zbl 1149.83314 · doi:10.1016/j.nuclphysb.2004.03.024
[22] Anselmi, D., ”Renormalization of quantum gravity coupled with matter in three dimensions”, Nucl. Phys. B, 687, 143–160, (2004). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0309249. · Zbl 1149.83315 · doi:10.1016/j.nuclphysb.2004.03.023
[23] Archer, F., and Williams, R.M., ”The Turaev-Viro state sum model and three-dimensional quantum gravity”, Phys. Lett. B, 273, 438–444, (1991). · doi:10.1016/0370-2693(91)90295-2
[24] Arcioni, G., Blau, M., and O’Loughlin, M., ”On the Boundary Dynamics of Chern-Simons Gravity”, J. High Energy Phys., 01, 067, (2003). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0210089. · Zbl 1225.81108 · doi:10.1088/1126-6708/2003/01/067
[25] Arnowitt, R., Deser, S., and Misner, C.W., ”The dynamics of general relativity”, in Witten, L., ed., Gravitation: An Introduction to Current Research, 227–265, (Wiley, New York, U.S.A., 1962). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0405109.
[26] Ashtekar, A., Lectures on Non-Perturbative Canonical Gravity, vol. 6 of Advanced Series in Astrophysics and Cosmology, (World Scientific, Singapore, 1991). · Zbl 0948.83500
[27] Ashtekar, A., ”Large quantum gravity effects: Unexpected limitations of the classical theory”, Phys. Rev. Lett., 77, 4864–4867, (1996). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9610008. · Zbl 0949.83505 · doi:10.1103/PhysRevLett.77.4864
[28] Ashtekar, A., Bombelli, L., and Reula, O.A., ”Covariant phase space of asymptotically flat gravitational fields”, in Francaviglia, M., and Holm, D., eds., Mechanics, Analysis and Geometry: 200 Years after Lagrange, North-Holland Delta Series, 417–450, (North Holland, Amsterdam, Netherlands, 1990). · Zbl 0717.53056
[29] Ashtekar, A., Husain, V., Rovelli, C., Samuel, J., and Smolin, L., ”2+1 quantum gravity as a toy model for the 3+1 theory”, Class. Quantum Grav., 6, L185–L193, (1989). · doi:10.1088/0264-9381/6/10/001
[30] Ashtekar, A., and Loll, R., ”New loop representations for 2+1 gravity”, Class. Quantum Grav., 11, 2417–2434, (1994). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9405031. · doi:10.1088/0264-9381/11/10/004
[31] Ashtekar, A., and Magnon, A., ”Quantum fields in curved space-times”, Proc. R. Soc. London, Ser. A, 346, 375–394, (1975). · Zbl 0948.81612 · doi:10.1098/rspa.1975.0181
[32] Ashtekar, A., and Pierri, M., ”Probing Quantum Gravity Through Exactly Soluble Midi-Superspaces I”, J. Math. Phys., 37, 6250–6270, (1996). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9606085. · Zbl 0862.58060 · doi:10.1063/1.531774
[33] Ashtekar, A., Wisniewski, J., and Dreyer, O., ”Isolated Horizons in 2+1 Gravity”, Adv. Theor. Math. Phys., 6, 507–555, (2002). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0206024. · Zbl 1031.83009 · doi:10.4310/ATMP.2002.v6.n3.a3
[34] Axelrod, S.E., DellaPietra, S., and Witten, E., ”Geometric quantization of Chern-Simons gauge theory”, J. Differ. Geom., 33, 787–902, (1991). · Zbl 0697.53061 · doi:10.4310/jdg/1214446565
[35] Baez, J.C., ”An Introduction to Spin Foam Models of Quantum Gravity and BF Theory”, in Gausterer, H., Grosse, H., and Pittner, L., eds., Geometry and Quantum Physics, Proceedings of the 38. Internationale Universitätswochen für Kern- und Teilchenphysik, Schladming, Austria, January 9–16, 1999, vol. 543 of Lecture Notes in Physics, 25–64, (Springer, Berlin, Germany; New York, U.S.A., 2000). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9905087.
[36] Bais, F.A., and Muller, N.M., ”Topological field theory and the quantum double of SU(2)”, Nucl. Phys. B, 530, 349–400, (1998). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9804130. · Zbl 0961.81100 · doi:10.1016/S0550-3213(98)00572-0
[37] Bais, F.A., Muller, N.M., and Schroers, B.J., ”Quantum group symmetry and particle scattering in (2+1)-dimensional quantum gravity”, Nucl. Phys. B, 640, 3–45, (2002). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0205021. · Zbl 0997.83021 · doi:10.1016/S0550-3213(02)00572-2
[38] Ballesteros, A., Rossano Bruno, N., and Herranz, F.J., ”Non-commutative relativistic space-times and worldlines from 2+1 quantum (anti)de Sitter groups”, (2004). URL (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0401244. · Zbl 1383.83105
[39] Bañados, M., ”Three-dimensional quantum geometry and black holes”, (1999). URL (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9901148. · Zbl 1162.83342
[40] Bañados, M., Henneaux, M., Teitelboim, C., and Zanelli, J., ”Geometry of the 2+1 Black Hole”, Phys. Rev. D, 48, 1506–1525, (1993). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9302012. · doi:10.1103/PhysRevD.48.1506
[41] Bañados, M., Teitelboim, C., and Zanelli, J., ”The Black Hole in Three Dimensional Space Time”, Phys. Rev. Lett., 69, 1849–1851, (1992). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9204099. · Zbl 0968.83514 · doi:10.1103/PhysRevLett.69.1849
[42] Banks, T., Fischler, W., and Susskind, L., ”Quantum cosmology in 2+1 and 3+1 dimensions”, Nucl. Phys. B, 262, 159–186, (1985). · doi:10.1016/0550-3213(85)90070-7
[43] Bar-Natan, D., and Witten, E., ”Perturbative expansion of Chern-Simons theory with non-compact gauge group”, Commun. Math. Phys., 141, 423–440, (1991). · Zbl 0738.53041 · doi:10.1007/BF02101513
[44] Barbero, J.F., and Varadarajan, M., ”The Phase Space of 2+1 Dimensional Gravity in the Ashtekar Formulation”, Nucl. Phys. B, 415, 515–532, (1994). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9307006. · Zbl 1007.83511 · doi:10.1016/0550-3213(94)90121-X
[45] Barbero, J.F., and Varadarajan, M., ”Homogeneous 2+1 Dimensional Gravity in the Ashtekar Formulation”, Nucl. Phys. B, 456, 355–376, (1995). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9507044. · Zbl 0925.83017 · doi:10.1016/0550-3213(98)00500-8
[46] Barrett, J.W., ”Geometrical measurements in three-dimensional quantum gravity”, Int. J. Mod. Phys. A, 18S2, 97–113, (2003). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0203018. · Zbl 1080.83510 · doi:10.1142/S0217751X03017981
[47] Barrett, J.W., and Crane, L., ”An algebraic interpretation of the Wheeler-DeWitt equation”, Class. Quantum Grav., 14, 2113–2121, (1997). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9609030. · Zbl 0880.58035 · doi:10.1088/0264-9381/14/8/011
[48] Barrett, J.W., and Foxon, T.J., ”Semiclassical limits of simplicial quantum gravity”, Class. Quantum Grav., 11, 543–556, (1994). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9310016. · Zbl 0797.53060 · doi:10.1088/0264-9381/11/3/009
[49] Barrow, J.D., Burd, A.B., and Lancaster, D., ”Three-dimensional classical spacetimes”, Class. Quantum Grav., 3, 551–567, (1986). · doi:10.1088/0264-9381/3/4/010
[50] Basu, S., ”Perturbation theory in covariant canonical quantization”, (2004). URL (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0410015.
[51] Bautier, K., Englert, F., Rooman, M., and Spindel, P., ”The Fefferman-Graham Ambiguity and AdS Black Holes”, Phys. Lett. B, 479, 291–298, (2000). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0002156. · Zbl 1049.53509 · doi:10.1016/S0370-2693(00)00339-7
[52] Becker, K., Becker, M., and Strominger, A., ”Three-Dimensional Supergravity and the Cosmological Constant”, Phys. Rev. D, 51, 6603–6607, (1995). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9502107. · doi:10.1103/PhysRevD.51.R6603
[53] Beetle, C., ”Midi-Superspace Quantization of Non-Compact Toroidally Symmetric Gravity”, Adv. Theor. Math. Phys., 2, 471–495, (1998). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9801107. · Zbl 0947.83023 · doi:10.4310/ATMP.1998.v2.n3.a1
[54] Beliakova, A., and Durhuus, B., ”Topological quantum field theory and invariants of graphs for quantum groups”, Commun. Math. Phys., 167, 395, (1995). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9309024. · Zbl 0828.57012 · doi:10.1007/BF02100592
[55] Benedetti, R., and Guadagnini, E., ”Cosmological Time in (2+1) – Gravity”, Nucl. Phys. B, 613, 330–352, (2001). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0003055. · Zbl 0970.83039 · doi:10.1016/S0550-3213(01)00386-8
[56] Birman, J.S., ”The algebraic structure of surface mapping class groups”, in Harvey, W.J., ed., Discrete Groups and Automorphic Functions, Proceedings of an instructional conference, Cambridge, England, 1975, 163–198, (Academic Press, London, U.K.; New York, U.S.A., 1977).
[57] Birman, J.S., and Hilden, H.M., ”On the mapping class groups of closed surfaces as covering spaces”, in Ahlfors, L.V. et al., ed., Advances in the Theory of Riemann Surfaces, vol. 66 of Annals of Math. Studies, 81–115, (Princeton University Press, Princeton, U.S.A., 1971). · Zbl 0217.48602
[58] Birmingham, D., and Carlip, S., unknown status. unpublished. 2.1
[59] Birmingham, D., Sachs, I., and Sen, S., ”Entropy of Three-Dimensional Black Holes in String Theory”, Phys. Lett. B, 424, 275–280, (1998). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9801019. · doi:10.1016/S0370-2693(98)00236-6
[60] Boulatov, D., ”A Model of Three-Dimensional Lattice Gravity”, Mod. Phys. Lett. A, 7, 1629–1646, (1992). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9202074. · Zbl 1020.83539 · doi:10.1142/S0217732392001324
[61] Buffenoir, E., Noui, K., and Roche, P., ”Hamiltonian Quantization of Chern-Simons theory with SL(2,C) Group”, Class. Quantum Grav., 19, 4953–5015, (2002). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0202121. · Zbl 1021.83016 · doi:10.1088/0264-9381/19/19/313
[62] Canary, R.D., Epstein, D.B.A., and Green, P., in Epstein, D.B.A., ed., Analytical and Geometric Aspects of Hyperbolic Space: Warwick and Durham 1984, Papers presented at two symposia held at the Universities of Warwick and Durham, vol. 111 of London Mathematical Society Lecture Notes Series, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987).
[63] Cantini, L., and Menotti, P., ”Functional approach to 2+1 dimensional gravity coupled to particles”, Class. Quantum Grav., 20, 845–858, (2003). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0209061. · Zbl 1026.83046 · doi:10.1088/0264-9381/20/5/305
[64] Carbone, G., Carfora, M., and Marzuoli, A., ”Quantum states of elementary three-geometry”, Class. Quantum Grav., 19, 3761–3774, (2002). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0112043. · Zbl 1002.83033 · doi:10.1088/0264-9381/19/14/315
[65] Carlip, S., ”Exact quantum scattering in 2+1 dimensional gravity”, Nucl. Phys. B, 324, 106–122, (1989). · doi:10.1016/0550-3213(89)90183-1
[66] Carlip, S., ”Observables, gauge invariance, and time in (2+1)-dimensional quantum gravity”, Phys. Rev. D, 42, 2647–2654, (1990). · doi:10.1103/PhysRevD.42.2647
[67] Carlip, S., ”Measuring the metric in (2+1)-dimensional quantum gravity”, Class. Quantum Grav., 8, 5–17, (1991). · Zbl 0713.53063 · doi:10.1088/0264-9381/8/1/007
[68] Carlip, S., ”(2+1)-dimensional Chern-Simons gravity as a Dirac square root”, Phys. Rev. D, 45, 3584–3590, (1992). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9109006. Erratum: Phys. Rev. D 47 (1993) 1729. · doi:10.1103/PhysRevD.45.3584
[69] Carlip, S., ”Entropy versus action in the (2+1)-dimensional Hartle-Hawking wave function”, Phys. Rev. D, 46, 4387–4395, (1992). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9205022. · doi:10.1103/PhysRevD.46.4387
[70] Carlip, S., ”Modular group, operator ordering, and time in (2+1)-dimensional gravity”, Phys. Rev. D, 47, 4520–4524, (1993). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9209011. · doi:10.1103/PhysRevD.47.4520
[71] Carlip, S., ”The Sum over Topologies in Three-Dimensional Euclidean Quantum Gravity”, Class. Quantum Grav., 10, 207–218, (1993). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9206103. · Zbl 0776.58008 · doi:10.1088/0264-9381/10/2/004
[72] Carlip, S., ”Geometric structures and loop variables in (2+1)-Dimensional gravity”, in Baez, J.C., ed., Knots and Quantum Gravity, Proceedings of a conference held at U. C. Riverside on May 14–16th, 1993, vol. 1 of Oxford Lecture Series in Mathematics and its Applications, (Clarendon Press; Oxford University Press, Oxford, U.K.; New York, U.S.A., 1994). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9309020.
[73] Carlip, S., ”Notes on the (2+1)-Dimensional Wheeler-DeWitt Equation”, Class. Quantum Grav., 11, 31, (1994). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9309002. · doi:10.1088/0264-9381/11/1/007
[74] Carlip, S., ”Six ways to quantize (2+1)-dimensional gravity”, in Mann, R.B., and McLenaghan, R.G., eds., Proceedings of the 5th Canadian Conference on General Relativity and Relativistic Astrophysics, University of Waterloo 13–15 May, 1993, (World Scientific, Singapore; River Edge, U.S.A., 1994). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9305020.
[75] Carlip, S., ”The (2+1)-Dimensional Black Hole”, Class. Quantum Grav., 12, 2853–2880, (1995). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9506079. · Zbl 0839.53071 · doi:10.1088/0264-9381/12/12/005
[76] Carlip, S., ”Lectures in (2+1)-Dimensional Gravity”, J. Korean Phys. Soc., 28, S447–S467, (1995). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9503024.
[77] Carlip, S., ”A Phase Space Path Integral for (2+1)-Dimensional Gravity”, Class. Quantum Grav., 12, 2201–2208, (1995). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9504033. · Zbl 0833.53063 · doi:10.1088/0264-9381/12/9/007
[78] Carlip, S., ”The Statistical Mechanics of the (2+1)-Dimensional Black Hole”, Phys. Rev. D, 51, 632–637, (1995). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9409052. · doi:10.1103/PhysRevD.51.632
[79] Carlip, S., ”Spacetime Foam and the Cosmological Constant”, Phys. Rev. Lett., 79, 4071–4074, (1997). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9708026. · Zbl 0953.83008 · doi:10.1103/PhysRevLett.79.4071
[80] Carlip, S., ”Dominant Topologies in Euclidean Quantum Gravity”, Class. Quantum Grav., 15, 2629–2638, (1998). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9710114. · Zbl 0938.83010 · doi:10.1088/0264-9381/15/9/010
[81] Carlip, S., Quantum Gravity in 2+1 Dimensions, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1998). · Zbl 0919.53024
[82] Carlip, S., ”What We Don’t Know about BTZ Black Hole Entropy”, Class. Quantum Grav., 15, 3609–3625, (1998). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9806026. · Zbl 0946.83030 · doi:10.1088/0264-9381/15/11/020
[83] Carlip, S., ”Quantum gravity: a Progress Report”, Rep. Prog. Phys., 64, 885–942, (2001). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0108040. · doi:10.1088/0034-4885/64/8/301
[84] Carlip, S., and Cosgrove, R., ”Topology Change in (2+1)-Dimensional Gravity”, J. Math. Phys., 35, 5477–5493, (1994). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9406006. · Zbl 0817.53058 · doi:10.1063/1.530760
[85] Carlip, S., and Gegenberg, J., ”Gravitating topological matter in 2+1 dimensions”, Phys. Rev. D, 44, 424–428, (1991). · doi:10.1103/PhysRevD.44.424
[86] Carlip, S., and Nelson, J.E., ”Equivalent Quantisations of (2+1)-Dimensional Gravity”, Phys. Lett. B, 324, 299–302, (1994). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9311007. · doi:10.1016/0370-2693(94)90197-X
[87] Carlip, S., and Nelson, J.E., ”Comparative quantizations of (2+1)-dimensional gravity”, Phys. Rev. D, 51, 5643–5653, (1995). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9411031. · doi:10.1103/PhysRevD.51.5643
[88] Carlip, S., and Nelson, J.E., ”Quantum modular group in (2+1)-dimensional gravity”, Phys. Rev. D, 59, 024012-1–12, (1998). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9807087. · doi:10.1103/PhysRevD.59.024012
[89] Carlip, S., and Nelson, J.E., ”Quantum modular group in (2+1)-dimensional gravity”, Heavy Ion Phys., 10, 361, (1999).
[90] Carter, J.S., Flath, D.E., and Saito, M., The classical and quantum 6j-symbols, vol. 43 of Mathematical Notes, (Princeton University Press, Princeton, U.S.A., 1995). · Zbl 0851.17001
[91] Chen, Y.-J., ”Quantum Liouville theory and BTZ black hole entropy”, Class. Quantum Grav., 21, 1153–1180, (2004). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0310234. · Zbl 1138.83327 · doi:10.1088/0264-9381/21/4/028
[92] Clarke, C.J.S., The Analysis of Space-Time Singularities, Cambridge Lecture Notes in Physics, (Cambridge University Press, Cambridge, U.K., 1993). · Zbl 0835.53093
[93] Cornfeld, I.P., Fomin, S.V., and Sinai, Y.G., Ergodic theory, vol. 245 of Grundlehren der mathematischen Wissenschaften, (Springer, New York, U.S.A., 1982).
[94] Cornish, N.J., and Frankel, N.E., ”Gravitation in 2+1 dimensions”, Phys. Rev. D, 43, 2555–2565, (1991). · doi:10.1103/PhysRevD.43.2555
[95] Cosgrove, R., ”Consistent evolution with different time slicings in quantum gravity”, Class. Quantum Grav., 13, 891–919, (1996). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9511059. · Zbl 0857.58048 · doi:10.1088/0264-9381/13/5/011
[96] Coussaert, O., Henneaux, M., and van Driel, P., ”The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant”, Class. Quantum Grav., 12, 2961–2966, (1995). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9506019. · Zbl 0836.53052 · doi:10.1088/0264-9381/12/12/012
[97] Criscuolo, A., Quevedo, H., and Waelbroeck, H., ”Quantization of (2+1) gravity on the torus”, in Khanna, F., and Vinet, L., eds., Field Theory, Integrable Systems and Symmetries, Lectures from the Congress of the Canadian Association of Physicists (CAP) held in Québec City, June 11–16, 1995, (CRM, Montreal, Canada, 1997) Related online version: http://arXiv.org/abs/gr-qc/9509041. · Zbl 0895.58067
[98] Crnkovic, C., and Witten, E., ”Covariant description of canonical formalism in geometrical theories”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, 676–684, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987). · Zbl 0966.81533
[99] Dasgupta, A., ”The Real Wick Rotations in Quantum Gravity”, J. High Energy Phys., 07, 062, (2002). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0202018. · doi:10.1088/1126-6708/2002/07/062
[100] Dasgupta, A., and Loll, R., ”A proper-time cure for the conformal sickness in quantum gravity”, Nucl. Phys. B, 606, 357–379, (2001). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0103186. · Zbl 0971.83020 · doi:10.1016/S0550-3213(01)00227-9
[101] Davids, S., ”Semiclassical Limits of Extended Racah Coefficients”, J. Math. Phys., 41, 924–943, (2000). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9807061. · Zbl 0971.33007 · doi:10.1063/1.533171
[102] Davids, S., ”A State Sum Model for (2+1) Lorentzian Quantum Gravity”, (2001). URL (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0110114.
[103] de Sousa Gerbert, P., and Jackiw, R., ”The Analysis of Space-Time Singularities”, Commun. Math. Phys., 124, 229–260, (1989). · Zbl 0685.35093 · doi:10.1007/BF01219196
[104] de Wit, B., Matschull, H.-J., and Nicolai, H., ”Physical States in d=3,N=2 Supergravity”, Phys. Lett. B, 318, 115–121, (1993). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9309006. · doi:10.1016/0370-2693(93)91793-M
[105] Deser, S., and Jackiw, R., ”Three-dimensional cosmological gravity: Dynamics of constant curvature”, Ann. Phys. (N.Y.), 153, 405–416, (1984). 1, 1 · doi:10.1016/0003-4916(84)90025-3
[106] Deser, S., and Jackiw, R., ”Classical and quantum scattering on a cone”, Commun. Math. Phys., 118, 495–509, (1988). · Zbl 0655.58038 · doi:10.1007/BF01466729
[107] Deser, S., Jackiw, R., and ’t Hooft, G., ”Three dimensional Einstein gravity: Dynamics of at space”, Ann. Phys. (N.Y.), 152, 220, (1984). · doi:10.1016/0003-4916(84)90085-X
[108] Deser, S., and van Nieuwenhuizen, P., ”Nonrenormalizability of the quantized Dirac-Einstein system”, Phys. Rev. D, 10, 411–420, (1974). · doi:10.1103/PhysRevD.10.411
[109] DeWitt, B.S., ”Gravity: a Universal Regulator?”, Phys. Rev. Lett., 13, 114–118, (1964). · Zbl 0122.22104 · doi:10.1103/PhysRevLett.13.114
[110] DeWitt, B.S., ”Quantum Theory of Gravity. I. The Canonical Theory”, Phys. Rev., 160, 1113–1148, (1967). · Zbl 0158.46504 · doi:10.1103/PhysRev.160.1113
[111] Dijkgraaf, R., Maldacena, J.M., Moore, G.W., and Verlinde, E., ”A Black Hole Farey Tail”, (2000). URL (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0005003.
[112] Dirac, P.A.M., ”Generalized Hamiltonian dynamics”, Can. J. Math., 2, 129–148, (1950). · Zbl 0036.14104 · doi:10.4153/CJM-1950-012-1
[113] Dirac, P.A.M., ”The Hamiltonian form of field dynamics”, Can. J. Math., 3, 1, (1951). · Zbl 0042.21202 · doi:10.4153/CJM-1951-001-2
[114] Dirac, P.A.M., ”Generalized Hamilton dynamics”, Proc. R. Soc. London, Ser. A, 246, 326, (1958). · Zbl 0080.41402 · doi:10.1098/rspa.1958.0141
[115] Dittrich, B., and Loll, R., ”Hexagon model for 3D Lorentzian quantum cosmology”, Phys. Rev. D, 66, 084016-1–15, (2002). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0204210. · doi:10.1103/PhysRevD.66.084016
[116] Elitzur, S., Moore, G.W., Schwimmer, A., and Seiberg, N., ”Remarks on the canonical quantization of the Chern-Simons-Witten theory”, Nucl. Phys. B, 326, 108–134, (1989). · doi:10.1016/0550-3213(89)90436-7
[117] Ezawa, K., ”Addendum to ”Classical and Quantum Evolutions of the de Sitter and the anti-de Sitter Universes in 2+1 dimensions””, Phys. Rev. D, 50, 2935–2938, (1994). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9403160. · doi:10.1103/PhysRevD.50.2935
[118] Ezawa, K., ”Transition Amplitude in 2+1 dimensional Chern-Simons Gravity on a Torus”, Int. J. Mod. Phys. A, 9, 4727–4746, (1994). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9305170. · Zbl 0985.81613 · doi:10.1142/S0217751X94001898
[119] Ezawa, K., ”Chern-Simons quantization of (2+1)-anti-de Sitter gravity on a torus”, Class. Quantum Grav., 12, 373–391, (1995). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9409074. · Zbl 0820.58061 · doi:10.1088/0264-9381/12/2/007
[120] Fay, J.D., ”Fourier coefficients of the resolvent for a Fuchsian group”, J. reine angew. Math., 293, 143, (1977). · Zbl 0352.30012
[121] Fischer, A., and Tromba, A., ”On a purely Riemmanian proof of the structure and dimension of the unramified moduli space of a compact Riemann surface”, Math. Ann., 267, 311–345, (1984). · Zbl 0518.32015 · doi:10.1007/BF01456093
[122] Fock, V.V., and Rosly, A.A., ”Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix”, Am. Math. Soc. Transl., 191, 67–86, (1999). · Zbl 0945.53050
[123] Forni, D.M., Iriondo, M., and Kozameh, C.N., ”Null surfaces formulation in 3D”, J. Math. Phys., 41, 5517–5534, (2000). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0005120. · Zbl 0977.83061 · doi:10.1063/1.533422
[124] Franzosi, R., and Guadagnini, E., ”Topology and classical geometry in (2+1) gravity”, Class. Quantum Grav., 13, 433–460, (1996). · Zbl 0846.32013 · doi:10.1088/0264-9381/13/3/011
[125] Freidel, L., ”A Ponzano-Regge model of Lorentzian 3-dimensional gravity”, Nucl. Phys. B (Proc. Suppl.), 88, 237–240, (2000). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0102098. · Zbl 1273.83129 · doi:10.1016/S0920-5632(00)00775-1
[126] Freidel, L., Kowalski-Glikman, J., and Smolin, L., ”2+1 gravity and Doubly Special Relativity”, Phys. Rev. D, 69, 044001, (2004). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0307085. · doi:10.1103/PhysRevD.69.044001
[127] Freidel, L., and Krasnov, K., ”Discrete spacetime volume for three-dimensional BF theory and quantum gravity”, Class. Quantum Grav., 16, 351–362, (1999). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9804185. · Zbl 0934.83020 · doi:10.1088/0264-9381/16/2/003
[128] Freidel, L., and Krasnov, K., ”Spin Foam Models and the Classical Action Principle”, Adv. Theor. Math. Phys., 2, 1183–1247, (1999). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9807092. · Zbl 0948.83024 · doi:10.4310/ATMP.1998.v2.n6.a1
[129] Freidel, L., and Livine, E.R., ”Spin Networks for Non-Compact Groups”, J. Math. Phys., 44, 1322–1356, (2003). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0205268. · Zbl 1062.81072 · doi:10.1063/1.1521522
[130] Freidel, L., Livine, E.R., and Rovelli, C., ”Spectra of length and area in (2+1) Lorentzian loop quantum gravity”, Class. Quantum Grav., 20, 1463–1478, (2003). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0212077. · Zbl 1035.83013 · doi:10.1088/0264-9381/20/8/304
[131] Freidel, L., and Louapre, D., ”Diffeomorphisms and spin foam models”, Nucl. Phys. B, 662, 279–298, (2003). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0212001. · Zbl 1040.83011 · doi:10.1016/S0550-3213(03)00306-7
[132] Freidel, L., and Louapre, D., ”Non-perturbative summation over 3D discrete topologies”, Phys. Rev. D, 68, 104004, (2003). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0211026. · doi:10.1103/PhysRevD.68.104004
[133] Fujiwara, Y., ”Geometrical construction of holonomy in three-dimensional hyperbolic manifold”, Class. Quantum Grav., 10, 219–232, (1993). · Zbl 0777.53065 · doi:10.1088/0264-9381/10/2/005
[134] Fujiwara, Y., Higuchi, S., Hosoya, A., Mishima, T., and Siino, M., ”Nucleation of a universe in (2+1)-dimensional gravity with a negative cosmological constant”, Phys. Rev. D, 44, 1756–1762, (2001). · doi:10.1103/PhysRevD.44.1756
[135] Fujiwara, Y., and Soda, J., ”Teichmüller Motion of (2+1)-Dimensional Gravity with the Cosmological Constant”, Prog. Theor. Phys., 83, 733–748, (1990). · Zbl 1058.83504 · doi:10.1143/PTP.83.733
[136] Gambini, R., and Pullin, J., Loops, Knots, Gauge Theories and Quantum Gravity, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1996). · Zbl 0865.53064
[137] Gambini, R., and Pullin, J., ”Large quantum gravity effects: backreaction on matter”, Mod. Phys. Lett. A, 12, 2407–2414, (1997). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9703088. · Zbl 0902.53064 · doi:10.1142/S0217732397002508
[138] Gambini, R., and Pullin, J., ”Consistent discretization and loop quantum geometry”, (2004). URL (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0409057.
[139] García-Islas, J. Manuel, ”Observables in 3-dimensional quantum gravity and topological invariants”, Class. Quantum Grav., 21, 3933–3952, (2004). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0401093. · Zbl 1062.83034 · doi:10.1088/0264-9381/21/16/008
[140] Gegenberg, J., Kunstatter, G., and Leivo, H.P., ”Topological matter coupled to gravity in 2+1 dimensions”, Phys. Lett. B, 252, 381–386, (1990). · doi:10.1016/0370-2693(90)90556-L
[141] Gibbons, G.W., and Hartle, J.B., ”Real tunneling geometries and the large-scale topology of the universe”, Phys. Rev. D, 42, 2458–2468, (1990). · doi:10.1103/PhysRevD.42.2458
[142] Gibbons, G.W., Hawking, S.W., and Perry, M.J., ”Path integrals and the indefiniteness of the gravitational action”, Nucl. Phys. B, 138, 141–150, (1978). · doi:10.1016/0550-3213(78)90161-X
[143] Giulini, D., and Louko, J., ”Diffeomorphism invariant subspaces in Witten’s 2+1 quantum gravity on R {\(\times\)} T2”, Class. Quantum Grav., 12, 2735–2746, (1995). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9504035. · Zbl 0841.53056 · doi:10.1088/0264-9381/12/11/006
[144] Giulini, D., and Marolf, D., ”On the Generality of Refined Algebraic Quantization”, Class. Quantum Grav., 16, 2479–2488, (1999). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9812024. · Zbl 1066.81584 · doi:10.1088/0264-9381/16/7/321
[145] Goldman, W.M., ”The symplectic nature of fundamental groups of surfaces”, Adv. Math., 54, 200–225, (1984). · Zbl 0574.32032 · doi:10.1016/0001-8708(84)90040-9
[146] Goldman, W.M., ”Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. Math., 85, 263–302, (1986). · Zbl 0619.58021 · doi:10.1007/BF01389091
[147] Goldman, W.M., in Goldman, W.M., and Magid, A.R., eds., Geometry of Group Representations, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held July 5–11, 1987, vol. 74 of Contemporary Mathematics, (American Mathematical Society, Providence, U.S.A., 1988).
[148] Goldman, W.M., ”Topological components of spaces of representation”, Invent. Math., 93, 557–607, (1988). · Zbl 0655.57019 · doi:10.1007/BF01410200
[149] Goroff, M.H., and Sagnotti, A., ”The ultraviolet behavior of Einstein gravity”, Nucl. Phys. B, 266, 709–736, (1986). · doi:10.1016/0550-3213(86)90193-8
[150] Gukov, S., ”Three-Dimensional Quantum Gravity, Chern-Simons Theory, and the A-Polynomial”, (2003). URL (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0306165. · Zbl 1115.57009
[151] Hamber, H.W., and Williams, R.M., ”Simplicial quantum gravity in three dimensions: Analytical and numerical results”, Phys. Rev. D, 47, 510–532, (1993). · doi:10.1103/PhysRevD.47.510
[152] Hartle, J.B., and Hawking, S.W., ”Wave function of the Universe”, Phys. Rev. D, 28, 2960–2975, (1983). · Zbl 1370.83118 · doi:10.1103/PhysRevD.28.2960
[153] Hasslacher, B., and Perry, M.J., ”Spin networks are simplicial quantum gravity”, Phys. Lett. B, 103, 21–24, (1981). · doi:10.1016/0370-2693(81)90185-4
[154] Hawking, S.W., in Hawking, S.W., and Israel, W., eds., General Relativity: An Einstein Centenary Survey, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1979). · Zbl 0424.53001
[155] Hayashi, N., ”Quantum Hilbert Space of G(C) Cher-Simons-Witten Theory and Gravity”, Prog. Theor. Phys. Suppl., 114, 125–147, (1993). · doi:10.1143/PTPS.114.125
[156] Hollmann, H.R., and Williams, R.M., ”Hyperbolic geometry in ’t Hooft’s approach to (2+1)-dimensional gravity”, Class. Quantum Grav., 16, 1503–1518, (1999). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9810021. · Zbl 0942.83049 · doi:10.1088/0264-9381/16/5/304
[157] Horowitz, G.T., and Welch, D.L., ”Exact Three Dimensional Black Holes in String Theory”, Phys. Rev. Lett., 71, 328–331, (1993). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9302126. · Zbl 0972.83564 · doi:10.1103/PhysRevLett.71.328
[158] Hosoya, A., ”Quantum smearing of spacetime singularity”, Class. Quantum Grav., 12, 2967–2975, (1995). · Zbl 0855.53065 · doi:10.1088/0264-9381/12/12/013
[159] Hosoya, A., and Nakao, K., ”(2+1)-dimensional pure gravity for an arbitrary closed initial surface”, Class. Quantum Grav., 7, 163–176, (1990). · Zbl 0683.53073 · doi:10.1088/0264-9381/7/2/010
[160] Hosoya, A., and Nakao, K., ”(2+1)-dimensional quantum gravity”, Prog. Theor. Phys., 84, 739–748, (1990). · doi:10.1143/ptp/84.4.739
[161] Ionicioiu, R., ”Amplitudes for topology change in Turaev-Viro theory”, Class. Quantum Grav., 15, 1885–1894, (1998). · Zbl 0940.57026 · doi:10.1088/0264-9381/15/7/007
[162] Ionicioiu, R., and Williams, R.M., ”Lens spaces and handlebodies in three-dimensional quantum gravity”, Class. Quantum Grav., 15, 3469–3477, (1998). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9806027. · Zbl 0946.83042 · doi:10.1088/0264-9381/15/11/012
[163] Isenberg, J.A., and Marsden, J.E., ”A slice theorem for the space of solutions of Einstein’s equations”, Phys. Rep., 89, 179–222, (1982). · doi:10.1016/0370-1573(82)90066-7
[164] Isham, C.J., ”Theta states induced by the diffeomorphism group in canonically quantized gravity”, in Duff, M.J., and Isham, C.J., eds., Quantum Structure of Space and Time, Proceedings of the Nuffield Workshop, Imperial College, London, 3–21 August, 1981, 37–52, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1982).
[165] Isham, C.J., Salam, A., and Strathdee, J., ”Infinity Suppression in Gravity-Modified Quantum Electrodynamics”, Phys. Rev. D, 3, 1805–1817, (1971). · doi:10.1103/PhysRevD.3.1805
[166] Isham, C.J., Salam, A., and Strathdee, J., ”Infinity Suppression in Gravity-Modified Electrodynamics. II”, Phys. Rev. D, 5, 2548–2565, (1972). · doi:10.1103/PhysRevD.5.2548
[167] Iwaniec, H., in Rankin, R.A., ed., Modular Forms, Papers from a symposium on modular forms held June 30–July 10, 1983, University of Durham, England, (Ellis Horwood; Halsted Press, Chichester, U.K.; New York, U.S.A., 1984).
[168] Jejjala, V., Leigh, R.G., and Minic, D., ”The Cosmological Constant and the Deconstruction of Gravity”, Phys. Lett. B, 556, 71–79, (2003). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0212057. · Zbl 1010.83051 · doi:10.1016/S0370-2693(03)00101-1
[169] Kádár, Z., and Loll, R., ”(2+1) gravity for higher genus in the polygon model”, Class. Quantum Grav., 21, 2465–2491, (2004). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0312043. · Zbl 1055.83028 · doi:10.1088/0264-9381/21/9/020
[170] Kaloper, N., ”Miens of The Three Dimensional Black Hole”, Phys. Rev. D, 48, 2598–2605, (1993). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9303007. · doi:10.1103/PhysRevD.48.2598
[171] Kowalski-Glikman, J., ”Introduction to Doubly Special Relativity”, (2004). URL (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0405273.
[172] Krasnov, K., ”On holomorphic factorization in asymptotically AdS 3D gravity”, Class. Quantum Grav., 20, 4015–4042, (2003). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0109198. · Zbl 1048.83018 · doi:10.1088/0264-9381/20/18/311
[173] Kuchař, K., in Kunstatter, G., Vincent, D.E., and Williams, J.G., eds., General Relativity and Relativistic Astrophysics, Proceedings of the 4th Canadian Conference, University of Winnipeg, 16–18 May, 1991, 211, (World Scientific, Singapore; River Edge, U.S.A., 1992).
[174] Kugo, T., unknown status. Kyoto preprint KUNS 1014 HE(TH)90/05 (1990).
[175] Lee, J., and Wald, R.M., ”Local symmetries and constraints”, J. Math. Phys., 31, 725–473, (1990). · Zbl 0704.70013 · doi:10.1063/1.528801
[176] Leutwyler, H., Nuovo Cimento, 42, 159, (1966). · doi:10.1007/BF02856201
[177] Livine, E.R., and Oeckl, R., ”Three-dimensional Quantum Supergravity and Supersymmetric Spin Foam”, Adv. Theor. Math. Phys., 7, 951–1001, (2004). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0307251. · Zbl 1073.83039 · doi:10.4310/ATMP.2003.v7.n6.a2
[178] Loll, R., ”Independent Loop Invariants for 2+1 Gravity”, Class. Quantum Grav., 12, 1655–1662, (1995). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9408007. · Zbl 0826.53071 · doi:10.1088/0264-9381/12/7/008
[179] Loll, R., ”Discrete Approaches to Quantum Gravity in Four Dimensions”, Living Rev. Relativity, 1, lrr-1998-13, (1998). URL (cited on 5 January 2005): http://www.livingreviews.org/lrr-1998-13. · Zbl 1023.83011
[180] Loll, R., ”Discrete Lorentzian quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 94, 96–107, (2001). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0011194. · doi:10.1016/S0920-5632(01)00957-4
[181] Louko, J., ”Witten’s 2+1 gravity on R x (Klein bottle)”, Class. Quantum Grav., 12, 2441–2468, (1995). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9505026. · Zbl 0852.53070 · doi:10.1088/0264-9381/12/10/006
[182] Louko, J., and Marolf, D., ”Solution space of 2+1 gravity on R {\(\times\)} T2 in Witten’s connection formulation”, Class. Quantum Grav., 11, 311–330, (1994). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9308018. · Zbl 0794.53048 · doi:10.1088/0264-9381/11/2/005
[183] Louko, J., and Matschull, H.-J., ”The 2+1 Kepler Problem and Its Quantization”, Class. Quantum Grav., 18, 2731–2784, (2001). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0103085. · Zbl 0996.83040 · doi:10.1088/0264-9381/18/14/310
[184] Maass, H., Lectures on Modular Functions of One Complex Variable, vol. 29 of Lectures on Mathematics and Physics. Mathematics, (Tata Institute of Fundamental Research, Bombay, India, 1964). · Zbl 0254.10018
[185] Magueijo, J., and Smolin, L., ”Lorentz invariance with an invariant energy scale”, Phys. Rev. Lett., 88, 190403, (2002). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0112090. · doi:10.1103/PhysRevLett.88.190403
[186] Mäakeläa, J., ”Simplicial Wheeler-DeWitt equation in 2+1 spacetime dimensions”, Phys. Rev. D, 48, 1679–1686, (1993). · doi:10.1103/PhysRevD.48.1679
[187] Maldacena, J.M., and Ooguri, H., ”Strings in AdS3 and the SL(2,R) WZW model. I: The spectrum”, J. Math. Phys., 42, 2929–2960, (2001). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0001053. · Zbl 1036.81033 · doi:10.1063/1.1377273
[188] Maldacena, J.M., and Ooguri, H., ”Strings in AdS3 and the SL(2,R) WZW model. II: Euclidean black hole”, J. Math. Phys., 42, 2961–2977, (2001). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0005183. · Zbl 1036.81034 · doi:10.1063/1.1377039
[189] Maldacena, J.M., and Ooguri, H., ”Strings in AdS3 and the SL(2,R) WZW model. III. Correlation functions”, Phys. Rev. D, 65, 106006-1–43, (2002). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0111180. · doi:10.1103/PhysRevD.65.106006
[190] Mandelstam, S., ”Feynman Rules for Electromagnetic and Yang-Mills Fields from the Gauge-Independent Field-Theoretic Formalism”, Phys. Rev., 175, 1580–1603, (1968). · doi:10.1103/PhysRev.175.1580
[191] Manuel García-Islas, J., ”(2+1)-dimensional quantum gravity, spin networks and asymptotics”, Class. Quantum Grav., 21, 445–464, (2004). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0307054. · Zbl 1050.83022 · doi:10.1088/0264-9381/21/2/009
[192] Marolf, D., ”Loop representations for 2+1 gravity on a torus”, Class. Quantum Grav., 10, 2625–2647, (1993). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9303019. · Zbl 0789.53042 · doi:10.1088/0264-9381/10/12/020
[193] Martinec, E.J., ”Soluble systems in quantum gravity”, Phys. Rev. D, 30, 1198–1204, (1984). · doi:10.1103/PhysRevD.30.1198
[194] Matschull, H.-J., ”On the relation between 2+1 Einstein gravity and Chern Simons theory”, Class. Quantum Grav., 16, 2599–2609, (1999). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9903040. · Zbl 0941.83034 · doi:10.1088/0264-9381/16/8/303
[195] Matschull, H.-J., ”The Phase Space Structure of Multi Particle Models in 2+1 Gravity”, Class. Quantum Grav., 18, 3497–3560, (2001). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0103084. · Zbl 0995.83044 · doi:10.1088/0264-9381/18/17/309
[196] Matschull, H.-J., and Nicolai, H., ”Canonical quantum supergravity in three dimensions”, Nucl. Phys. B, 411, 609–649, (1994). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9306018. · Zbl 1049.83516 · doi:10.1016/0550-3213(94)90464-2
[197] Matschull, H.-J., and Welling, M., ”Quantum Mechanics of a Point Particle in 2+1 Dimensional Gravity”, Class. Quantum Grav., 15, 2981–3030, (1998). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9708054. · Zbl 1063.83534 · doi:10.1088/0264-9381/15/10/008
[198] Mazur, P.O., and Mottola, E., ”The path integral measure, conformal factor problem and stability of the ground state of quantum gravity”, Nucl. Phys. B, 341, 187–212, (1990). · Zbl 0969.83509 · doi:10.1016/0550-3213(90)90268-I
[199] Menotti, P., and Seminara, D., ”ADM Approach to 2+1 Dimensional Gravity Coupled to Particles”, Ann. Phys. (N.Y.), 279, 282–310, (2000). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9907111. · Zbl 1053.83512 · doi:10.1006/aphy.1999.5972
[200] Mess, G., ”Lorentz Spacetimes of Constant Curvature”, unknown status, (1990). Institut des Hautes Etudes Scientifiques preprint IHES/M/90/28. · Zbl 1206.83117
[201] Meusburger, C., and Schroers, B.J., ”Poisson structure and symmetry in the Chern-Simons formulation of (2+1)-dimensional gravity”, Class. Quantum Grav., 20, 2193–2234, (2003). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0301108. · Zbl 1029.83036 · doi:10.1088/0264-9381/20/11/318
[202] Minassian, E.A., ”Spacetime Singularities in (2+1)-Dimensional Quantum Gravity”, Class. Quantum Grav., 19, 5877–5901, (2002). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0203026. · Zbl 1023.83012 · doi:10.1088/0264-9381/19/23/301
[203] Mizoguchi, S., and Tada, T., ”3-dimensional Gravity and the Turaev-Viro Invariant”, Prog. Theor. Phys. Suppl., 110, 207, (1992). · Zbl 0828.58046 · doi:10.1143/PTPS.110.207
[204] Mizoguchi, S., and Tada, T., ”3-dimensional Gravity from the Turaev-Viro Invariant”, Phys. Rev. Lett., 68, 1795–1798, (1992). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9110057. · Zbl 0969.83502 · doi:10.1103/PhysRevLett.68.1795
[205] Mizoguchi, S., and Yamamoto, H., ”On the stability of renormalizable expansions in three-dimensional gravity”, Phys. Rev. D, 50, 7351–7362, (1994). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9307131. · doi:10.1103/PhysRevD.50.7351
[206] Moncrief, V., ”Reduction of the Einstein equations in 2+1 dimensions to a Hamiltonian system over Teichmuller space”, J. Math. Phys., 30, 2907–2914, (1989). · Zbl 0704.53076 · doi:10.1063/1.528475
[207] Moncrief, V., ”How solvable is (2+1)-dimensional Einstein gravity?”, J. Math. Phys., 31, 2978–2982, (1990). · Zbl 0732.53069 · doi:10.1063/1.528950
[208] Nelson, J.E., and Picken, R.F., ”Quantum Holonomies in (2+1)-Dimensional Gravity”, Phys. Lett. B, 471, 367–372, (2000). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9911005. · Zbl 0974.83019 · doi:10.1016/S0370-2693(99)01407-0
[209] Nelson, J.E., and Picken, R.F., ”Parametrization of the moduli space of flat SL(2,R) connections on the torus”, Lett. Math. Phys., 59, 215–226, (2002). Related online version (cited on 5 January 2005): http://arXiv.org/abs/math-ph/0105015. · Zbl 1008.53066 · doi:10.1023/A:1015574209985
[210] Nelson, J.E., and Regge, T., ”Homotopy groups and 2+1 dimensional quantum gravity”, Nucl. Phys. B, 328, 190–202, (1989). · doi:10.1016/0550-3213(89)90099-0
[211] Nelson, J.E., and Regge, T., ”Homotopy groups and (2+1)-dimensional quantum de Sitter gravity”, Nucl. Phys. B, 339, 516–532, (1990). · doi:10.1016/0550-3213(90)90359-L
[212] Nelson, J.E., and Regge, T., ”(2+1) gravity for genus ? 1”, Commun. Math. Phys., 141, 211–223, (1991). · Zbl 0746.53062 · doi:10.1007/BF02100010
[213] Nelson, J.E., and Regge, T., ”2+1 quantum gravity”, Phys. Lett. B, 272, 213–216, (1991). · doi:10.1016/0370-2693(91)91822-D
[214] Nelson, J.E., and Regge, T., ”Quantisation of 2+1 gravity for genus 2”, Phys. Rev. D, 50, 5125–5129, (1994). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9311029. · doi:10.1103/PhysRevD.50.5125
[215] Noui, K., and Perez, A., ”Three dimensional loop quantum gravity: coupling to point particles”, (2004). URL (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0402111. · Zbl 1086.83015
[216] Noui, K., and Perez, A., ”Three dimensional loop quantum gravity: physical scalar product and spin foam models”, (2004). URL (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0402110. · Zbl 1072.83009
[217] Okamura, T., and Ishihara, H., ”Perturbation of higher-genus spatial surfaces in (2+1)-dimensional gravity”, Phys. Rev. D, 46, 572–577, (1992). · doi:10.1103/PhysRevD.46.572
[218] Okamura, T., and Ishihara, H., ”Perturbation of higher-genus surfaces in (2+1)-dimensional gravity with a cosmological constant”, Phys. Rev. D, 47, 1706–1708, (1993). · doi:10.1103/PhysRevD.47.1706
[219] Ooguri, H., ”Partition Functions and Topology-Changing Amplitudes in the 3D Lattice Gravity of Ponzano and Regge”, Nucl. Phys. B, 382, 276–304, (1992). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9112072. · Zbl 0968.82519 · doi:10.1016/0550-3213(92)90188-H
[220] Ooguri, H., and Sasakura, N., ”Discrete and Continuum Approaches to Three-Dimensional Quantum Gravity”, Mod. Phys. Lett. A, 6, 3591–3600, (1991). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9108006. · Zbl 1020.81743 · doi:10.1142/S0217732391004140
[221] Peldán, P., ”Large Diffeomorphisms in (2+1)-Quantum Gravity on the Torus”, Phys. Rev. D, 53, 3147–3155, (1996). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9501020. · doi:10.1103/PhysRevD.53.3147
[222] Perez, A., ”Spin foam models for quantum gravity”, Class. Quantum Grav., 20, R43–R104, (2003). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0301113. · Zbl 1030.83002 · doi:10.1088/0264-9381/20/6/202
[223] Petryk, R., and Schleich, K., ”Conditional probabilities in Ponzano-Regge minisuperspace”, Phys. Rev. D, 67, 024019-1–13, (2003). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0109083. · doi:10.1103/PhysRevD.67.024019
[224] Pierri, M., ”Probing Quantum General Relativity Through Exactly Soluble Midi-Superspaces II: Polarized Gowdy Models”, Int. J. Mod. Phys. D, 11, 135, (2002). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0101013. · Zbl 1062.83037 · doi:10.1142/S0218271802001779
[225] Ponzano, G., and Regge, T., in Bloch, F. et al., ed., Spectroscopic and group theoretical methods in physics: Racah memorial volume, (North-Holland, Amsterdam, Netherlands, 1968).
[226] Puzio, R.S., ”The Gauss map and 2+1 gravity”, Class. Quantum Grav., 11, 2667–2675, (1994). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9403012. · Zbl 0821.53046 · doi:10.1088/0264-9381/11/11/009
[227] Puzio, R.S., ”On the square root of the Laplace-Beltrami operator as a Hamiltonian”, Class. Quantum Grav., 11, 609–620, (1994). · Zbl 0812.32009 · doi:10.1088/0264-9381/11/3/013
[228] Rama, S.K., and Sen, S., ”3-D manifolds, graph invariants, and Chern-Simons theory”, Mod. Phys. Lett. A, 7, 2065–2076, (1992). · Zbl 1020.57506 · doi:10.1142/S0217732392001804
[229] Ratcliffe, J.G., and Tschantz, S.T., ”On the Growth of the Number of Hyperbolic Gravitational Instantons with Respect to Volume”, Class. Quantum Grav., 17, 2999–3007, (2000). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0009004. · Zbl 0963.53045 · doi:10.1088/0264-9381/17/15/310
[230] Ray, D.B., and Singer, I.M., ”R-torsion and the Laplacian on Riemannian manifolds”, Adv. Math., 7, 145–210, (1971). · Zbl 0239.58014 · doi:10.1016/0001-8708(71)90045-4
[231] Regge, T., ”General relativity without coordinates”, Nuovo Cimento, 19, 558–571, (1961). · doi:10.1007/BF02733251
[232] Regge, T., and Williams, R.M., ”Discrete structures in gravity”, J. Math. Phys., 41, 3964–3984, (2000). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0012035. · Zbl 0984.83016 · doi:10.1063/1.533333
[233] Roberts, J., ”Skein theory and Turaev-Viro invariants”, Topology, 34, 771–788, (1995). · Zbl 0866.57014 · doi:10.1016/0040-9383(94)00053-0
[234] Roberts, J.D., ”Classical 6j-symbols and the tetrahedron”, Geom. Topol., 3, 21–66, (1999). Related online version (cited on 5 January 2005): http://arXiv.org/abs/math-ph/9812013. · Zbl 0918.22014 · doi:10.2140/gt.1999.3.21
[235] Rocek, M., and Williams, R.M., ”Three-dimensional Einstein gravity and Regge calculus”, Class. Quantum Grav., 2, 701–706, (1985). · Zbl 0576.53053 · doi:10.1088/0264-9381/2/5/012
[236] Rovelli, C., ”Quantum mechanics without time: A model”, Phys. Rev. D, 42, 2638–2646, (1990). · doi:10.1103/PhysRevD.42.2638
[237] Rovelli, C., ”Time in quantum gravity: An hypothesis”, Phys. Rev. D, 43, 442–456, (1991). · doi:10.1103/PhysRevD.43.442
[238] Rovelli, C., ”The basis of the Ponzano-Regge-Turaev-Viro-Ooguri model is the loop representation basis”, Phys. Rev. D, 48, 2702–2707, (1993). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9304164. · doi:10.1103/PhysRevD.48.2702
[239] Rovelli, C., ”Loop Quantum Gravity”, Living Rev. Relativity, 1, lrr-1998-1, (1998). URL (cited on 5 January 2005): http://www.livingreviews.org/lrr-1998-1. · Zbl 1023.83013
[240] Rovelli, C., ”Notes for a brief history of quantum gravity”, (2000). URL (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0006061.
[241] Rovelli, C., Colosi, D., Doplicher, L., Fairbairn, W., Modesto, L., and Noui, K., ”Background independence in a nutshell”, (2004). URL (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/0408079. · Zbl 1129.81331
[242] Sasakura, N., ”Exact three-dimensional lattice gravities”, Prog. Theor. Phys. Suppl., 110, 191–206, (1992). · Zbl 0827.53064 · doi:10.1143/PTPS.110.191
[243] Schwarz, A.S., ”The partition function of degenerate quadratic functional and Ray-Singer invariants”, Lett. Math. Phys., 2, 247–252, (1978). · Zbl 0383.70017 · doi:10.1007/BF00406412
[244] Schwarz, A.S., ”The partition function of a degenerate functional”, Commun. Math. Phys., 67, 1–16, (1979). · Zbl 0429.58015 · doi:10.1007/BF01223197
[245] Seriu, M., ”Partition Function for (2+1)-Dimensional Einstein Gravity”, Phys. Rev. D, 55, 781–790, (1997). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9609052. · doi:10.1103/PhysRevD.55.781
[246] Staruszkiewicz, A., ”Gravitation theory in three-dimensional space”, Acta Phys. Pol., 6, 734, (1963).
[247] Strominger, A., ”Black Hole Entropy from Near-Horizon Microstates”, J. High Energy Phys., 02, 009, (1998). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9712251. · Zbl 0955.83010 · doi:10.1088/1126-6708/1998/02/009
[248] Sullivan, D., and Thurston, W.P., ”Manifolds with canonical coordinate charts: Some examples”, Enseign. Math., 29, 15–25, (1983). · Zbl 0529.53025
[249] ’t Hooft, G., ”Non-perturbative 2 particle scattering amplitudes in 2+1 dimensional quantum gravity”, Commun. Math. Phys., 117, 685–700, (1988). · Zbl 0663.47007 · doi:10.1007/BF01218392
[250] ’t Hooft, G., ”Causality in (2+1)-dimensional gravity”, Class. Quantum Grav., 9, 1335–1348, (1992). · Zbl 0991.83531 · doi:10.1088/0264-9381/9/5/015
[251] ’t Hooft, G., ”Canonical Quantization of Gravitating Point Particles in 2+1 Dimensions”, Class. Quantum Grav., 10, 1653–1664, (1993). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9305008. · Zbl 0787.53078 · doi:10.1088/0264-9381/10/8/022
[252] ’t Hooft, G., ”Classical N-particle cosmology in 2+1 dimensions”, Class. Quantum Grav., 10, S79–S91, (1993). · Zbl 0793.53107 · doi:10.1088/0264-9381/10/S/008
[253] ’t Hooft, G., ”The evolution of gravitating point particles in 2+1 dimensions”, Class. Quantum Grav., 10, 1023–1038, (1993). · doi:10.1088/0264-9381/10/5/019
[254] ’t Hooft, G., ”Quantization of Point Particles in 2+1 Dimensional Gravity and Space-Time Discreteness”, Class. Quantum Grav., 13, 1023–1040, (1996). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9601014. · Zbl 0855.53047 · doi:10.1088/0264-9381/13/5/018
[255] Taylor, Y.U., and Woodward, C
[256] Thurston, W.P., The Geometry and Topology of Three-Manifolds, Princeton Lecture Notes, (Princeton University Press, Princeton, U.S.A., 1979). Related online version (cited on 5 January 2005): http://www.msri.org/publications/books/gt3m/.
[257] Torre, C.G., ”Gravitational observables and local symmetries”, Phys. Rev. D, 48, 2373–2376, (1993). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9306030. · doi:10.1103/PhysRevD.48.R2373
[258] Torre, C.G., and Varadarajan, M., ”Functional evolution of free quantum fields”, Class. Quantum Grav., 16, 2651–2668, (1999). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9811222. · Zbl 1081.81560 · doi:10.1088/0264-9381/16/8/306
[259] Troost, J., and Tsuchiya, A., ”Towards black hole scattering”, Phys. Lett. B, 574, 301–308, (2003). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0307158. · Zbl 1058.83520 · doi:10.1016/j.physletb.2003.09.019
[260] Turaev, V.G., ”Quantum invariants of 3-manifolds and a glimpse of shadow topology”, C. R. Acad. Sci. Ser. I, 313, 395–398, (1991). · Zbl 0752.57009
[261] Turaev, V.G., Quantum Invariants of Knots and 3-Manifolds, vol. 18 of De Gruyter Studies in Mathematics, (Walter de Gruyter, Berlin, Germany; New York, U.S.A., 1994). · Zbl 0812.57003
[262] Turaev, V.G., and Viro, O.Y., ”State Sum Invariants of 3-Manifolds and Quantum 6j-Symbols”, Topology, 31, 865–902, (1992). · Zbl 0779.57009 · doi:10.1016/0040-9383(92)90015-A
[263] Unruh, W.G., and Newbury, P., ”Solution to 2+1 gravity in dreibein formalism”, Int. J. Mod. Phys. D, 3, 131–138, (1994). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9307029. · doi:10.1142/S0218271894000137
[264] Valtancoli, P., ”(2+1)-AdS Gravity on Riemann Surfaces”, Int. J. Mod. Phys. A, 16, 2817–2839, (2001). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9907174. · Zbl 0995.83027 · doi:10.1142/S0217751X01004220
[265] Varadarajan, M., ”On the metric operator for quantum cylindrical waves”, Class. Quantum Grav., 17, 189–199, (2000). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9910043. · Zbl 0960.83013 · doi:10.1088/0264-9381/17/1/313
[266] Waelbroeck, H., ”2+1 lattice gravity”, Class. Quantum Grav., 7, 751, (1990). · Zbl 0693.53034 · doi:10.1088/0264-9381/7/5/006
[267] Waelbroeck, H., ”Time-dependent solutions of 2+1 gravity”, Phys. Rev. Lett., 64, 2222–2225, (1990). · Zbl 1050.83505 · doi:10.1103/PhysRevLett.64.2222
[268] Waelbroeck, H., ”Solving the time-evolution problem in 2+1 gravity”, Nucl. Phys. B, 364, 475–494, (1991). · doi:10.1016/0550-3213(91)90594-N
[269] Waelbroeck, H., ”Canonical quantization of (2+1)-dimensional gravity”, Phys. Rev. D, 50, 4982–4992, (1994). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9401022. · doi:10.1103/PhysRevD.50.4982
[270] Waelbroeck, H., and Zapata, J.A., ”Translation symmetry in 2+1 Regge calculus”, Class. Quantum Grav., 10, 1923–1932, (1993). · Zbl 0784.53063 · doi:10.1088/0264-9381/10/9/029
[271] Waelbroeck, H., and Zapata, J.A., ”(2+1) covariant lattice theory and’ t Hooft’s formulation”, Class. Quantum Grav., 13, 1761–1768, (1996). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9601011. · Zbl 0858.53069 · doi:10.1088/0264-9381/13/7/009
[272] Wald, R.M., ”Black hole entropy is Noether charge”, Phys. Rev. D, 48, R3427–R3431, (1993). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9307038. · Zbl 0942.83512 · doi:10.1103/PhysRevD.48.R3427
[273] Waldron, A., ”Milne and Torus Universes Meet”, (2004). URL (cited on 5 January 2005): http://arXiv.org/abs/hep-th/0408088. · Zbl 1124.83014
[274] Welling, M., ”The Torus Universe in the Polygon Approach to 2+1-Dimensional Gravity”, Class. Quantum Grav., 14, 929–943, (1997). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9606011. · Zbl 0872.53064 · doi:10.1088/0264-9381/14/4/010
[275] Welling, M., ”Two particle Quantummechanics in 2+1 Gravity using Non Commuting”, Class. Quantum Grav., 14, 3313–3326, (1997). Related online version (cited on 5 January 2005): http://arXiv.org/abs/gr-qc/9703058. · Zbl 0904.53056 · doi:10.1088/0264-9381/14/12/015
[276] Wheeler, J.A., ”Superspace and the nature of quantum geometrodynamics”, in DeWitt, C., and Wheeler, J.A., eds., Battelle Rencontres: 1967 Lectures in Mathematics and Physics, (W.A. Benjamin, New York, U.S.A., 1968). · Zbl 0183.56803
[277] Witten, E., ”2+1 dimensional gravity as an exactly soluble system”, Nucl. Phys. B, 311, 46–78, (1988). · Zbl 1258.83032 · doi:10.1016/0550-3213(88)90143-5
[278] Witten, E., ”Quantum field theory and the Jones polynomial”, Commun. Math. Phys., 121, 351–399, (1989). · Zbl 0667.57005 · doi:10.1007/BF01217730
[279] Witten, E., ”Topology-changing amplitudes in 2+1 dimensional gravity”, Nucl. Phys. B, 323, 113–140, (1989). · doi:10.1016/0550-3213(89)90591-9
[280] Witten, E., ”Quantization of Chern-Simons gauge theory with complex gauge group”, Commun. Math. Phys., 137, 29–66, (1991). · Zbl 0717.53074 · doi:10.1007/BF02099116
[281] Witten, E., ”Is Supersymmetry Really Broken?”, Int. J. Mod. Phys. A, 10, 1247–1248, (1995). Related online version (cited on 5 January 2005): http://arXiv.org/abs/hep-th/9409111. · Zbl 1044.81620 · doi:10.1142/S0217751X95000590
[282] Woodard, R.P., ”Enforcing the Wheeler-DeWitt constraint the easy way”, Class. Quantum Grav., 10, 483–496, (1993). · doi:10.1088/0264-9381/10/3/008
[283] Wu, S., ”Topological quantum field theories on manifolds with a boundary”, Commun. Math. Phys., 136, 157–168, (1991). · Zbl 0716.57008 · doi:10.1007/BF02096795
[284] York Jr, J.W., ”Role of Conformal Three-Geometry in the Dynamics of Gravitation”, Phys. Rev. Lett., 28, 1082–1085, (1972). · doi:10.1103/PhysRevLett.28.1082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.