×

Spanning the isogeny class of a power of an elliptic curve. (English) Zbl 1486.14046

Let \(g, m \geq 1\) be integers, \(p\) be a prime, \(q = p^m\) and \(\mathcal{W}\) (resp. \(\mathcal{W}_1\)) be a set of the \(\mathbb{F}_q\)-isomorphism classes of (resp. principally polarized) abelian varieties isogenous to a given \(g\)-dimensional abelian variety \(A_0\) over \(\mathbb{F}_q\). In general, it is difficult to give an explicit description of \(\mathcal{W}\) and \(\mathcal{W}_1\) and only partial results have been obtained so far. In the article under review the authors present an algorithm to obtain, under some technical assumptions, such a description for \(A_0 = E^g\), where \(E\) is an ordinary elliptic curve defined over \(\mathbb{F}_q\). Using the functorial relations developed in [B. W. Jordan et al., Compos. Math. 154, No. 5, 934–959 (2018; Zbl 1400.14116)] they show that elements in \(\mathcal{W}_1\) are in the correspondence with the unimodular positive definite hermitian \(R\)-lattices \((L,h)\) of rank \(g\), where \(R = \mathbb{Z}[\pi]\) with \(\pi\) being the Frobenius endomorphism of \(E\). Then, to obtain a geometric description, the authors give an algorithm to compute the theta null point of \((A, \mathcal{L}) \in \mathcal{W}_1\) from its lattice description. More precisely, it is possible to compute the theta null point for \(E^g\) with the product polarization \(\mathcal{L}_0\), construct an isogeny \(f: E^g \to A\) such that \(f^*\mathcal{L} = \mathcal{L}_0^l\) for some \(l\) and transport the theta null point from \((E^g, \mathcal{L}_0)\) to \((A, \mathcal{L})\) using the isogeny formula from [R. Cosset and D. Robert, Math. Comput. 84, No. 294, 1953–1975 (2015; Zbl 1315.11103)]. In addition, the authors show how to compute Siegel modular forms of even weight given as polynomials in the theta constants. This is done by choosing a certain affine lift of theta null point on \((A, \mathcal{L})\). As applications of the algorithms, the authors present an algebraic computation of Serre’s obstruction for any \((A, \mathcal{L})\) in the isogeny class of \(E^3\) and the Igusa modular form in dimension 4, which gives an alternative way to prove that a certain isogeny class does not contain Jacobians. A few interesting applications of the algorithms are presented for curves of genera 2 and 3 with many rational points over certain finite fields.

MSC:

14H42 Theta functions and curves; Schottky problem
14G15 Finite ground fields in algebraic geometry
14H45 Special algebraic curves and curves of low genus
16H20 Lattices over orders

References:

[1] Akhiezer, N. I., Elements of the theory of elliptic functions, Translations of Mathematical Monographs 79, viii+237 pp. (1990), American Mathematical Society, Providence, RI · Zbl 0694.33001 · doi:10.1090/mmono/079
[2] Amir-Khosravi, Zavosh, Serre’s tensor construction and moduli of abelian schemes, Manuscripta Math., 156, 3-4, 409-456 (2018) · Zbl 1414.11075 · doi:10.1007/s00229-017-0976-x
[3] Balakrishnan, Jennifer S.; Ionica, Sorina; Lauter, Kristin; Vincent, Christelle, Constructing genus-3 hyperelliptic Jacobians with CM, LMS J. Comput. Math., 19, suppl. A, 283-300 (2016) · Zbl 1404.11085 · doi:10.1112/S1461157016000322
[4] G. Bisson, R. Cosset, and D. Robert, Avisogenies, Magma package devoted to the computation of isogenies between abelian varieties, 2010. http://avisogenies.gforge.inria.fr.
[5] Bisson, Gaetan; Sutherland, Andrew V., Computing the endomorphism ring of an ordinary elliptic curve over a finite field, J. Number Theory, 131, 5, 815-831 (2011) · Zbl 1225.11085 · doi:10.1016/j.jnt.2009.11.003
[6] Borevi\v{c}, Z. I.; Faddeev, D. K., Integral representations of quadratic rings, Vestnik Leningrad. Univ., 15, 19, 52-64 (1960) · Zbl 0095.02803
[7] Brinkmann, B.; Gerritzen, L., The lowest term of the Schottky modular form, Math. Ann., 292, 2, 329-335 (1992) · Zbl 0747.11022 · doi:10.1007/BF01444624
[8] Bruinier, Jan Hendrik; van der Geer, Gerard; Harder, G\"{u}nter; Zagier, Don, The 1-2-3 of modular forms, Universitext, x+266 pp. (2008), Springer-Verlag, Berlin · Zbl 1197.11047 · doi:10.1007/978-3-540-74119-0
[9] L. Candelori, The transformation laws of algebraic theta functions, 1609.04486, 2016.
[10] Centeleghe, Tommaso Giorgio; Stix, Jakob, Categories of abelian varieties over finite fields, I: Abelian varieties over \(\mathbb{F}_p\), Algebra Number Theory, 9, 1, 225-265 (2015) · Zbl 1395.11102 · doi:10.2140/ant.2015.9.225
[11] Chai, Ching-Li, Siegel moduli schemes and their compactifications over \({\bf C}\). Arithmetic geometry, Storrs, Conn., 1984, 231-251 (1986), Springer, New York · Zbl 0603.14027
[12] Chua, Lynn; Kummer, Mario; Sturmfels, Bernd, Schottky algorithms: classical meets tropical, Math. Comp., 88, 319, 2541-2558 (2019) · Zbl 1505.14071 · doi:10.1090/mcom/3406
[13] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren (eds.), Handbook of elliptic and hyperelliptic curve cryptography, Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2006. · Zbl 1082.94001
[14] R. Cosset, Application des fonctions th\^eta \`a la cryptographie sur courbes hyperelliptiques, Ph.D. thesis, Universit\'e Nancy-I, 2011.
[15] Cosset, Romain; Robert, Damien, Computing \((\ell ,\ell )\)-isogenies in polynomial time on Jacobians of genus \(2\) curves, Math. Comp., 84, 294, 1953-1975 (2015) · Zbl 1315.11103 · doi:10.1090/S0025-5718-2014-02899-8
[16] Deligne, Pierre, Vari\'{e}t\'{e}s ab\'{e}liennes ordinaires sur un corps fini, Invent. Math., 8, 238-243 (1969) · Zbl 0179.26201 · doi:10.1007/BF01406076
[17] Deligne, P.; Mumford, D., The irreducibility of the space of curves of given genus, Inst. Hautes \'{E}tudes Sci. Publ. Math., 36, 75-109 (1969) · Zbl 0181.48803
[18] T. Dupuy, K. Kedlaya, D. Roe, and C. Vincent, Isogeny classes of abelian varieties over finite fields in the LMFDB, 2003.05380, 2020.
[19] Eisentr\"{a}ger, Kirsten; Lauter, Kristin, A CRT algorithm for constructing genus 2 curves over finite fields. Arithmetics, geometry, and coding theory (AGCT 2005), S\'{e}min. Congr. 21, 161-176 (2010), Soc. Math. France, Paris · Zbl 1270.11060
[20] Enge, Andreas, The complexity of class polynomial computation via floating point approximations, Math. Comp., 78, 266, 1089-1107 (2009) · Zbl 1208.11136 · doi:10.1090/S0025-5718-08-02200-X
[21] Faltings, Gerd; Chai, Ching-Li, Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 22, xii+316 pp. (1990), Springer-Verlag, Berlin · Zbl 0744.14031 · doi:10.1007/978-3-662-02632-8
[22] Farkas, Hershel M.; Kra, Irwin, Theta constants, Riemann surfaces and the modular group, Graduate Studies in Mathematics 37, xxiv+531 pp. (2001), American Mathematical Society, Providence, RI · Zbl 0982.30001 · doi:10.1090/gsm/037
[23] Fincke, U.; Pohst, M., Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comp., 44, 170, 463-471 (1985) · Zbl 0556.10022 · doi:10.2307/2007966
[25] Gan, Wee Teck; Yu, Jiu-Kang, Group schemes and local densities, Duke Math. J., 105, 3, 497-524 (2000) · Zbl 1048.11028 · doi:10.1215/S0012-7094-00-10535-2
[26] A. Grothendieck and J. Dieudonn\'e, El\'ements de g\'eom\'etrie alg\'ebrique, Publ. math. IHES 20 (1964), no. 24, 1965. · Zbl 0203.23301
[27] Haloui, Safia, The characteristic polynomials of abelian varieties of dimensions 3 over finite fields, J. Number Theory, 130, 12, 2745-2752 (2010) · Zbl 1200.14045 · doi:10.1016/j.jnt.2010.06.008
[28] Haloui, Safia; Singh, Vijaykumar, The characteristic polynomials of abelian varieties of dimension 4 over finite fields. Arithmetic, geometry, cryptography and coding theory, Contemp. Math. 574, 59-68 (2012), Amer. Math. Soc., Providence, RI · Zbl 1329.14055 · doi:10.1090/conm/574/11446
[29] Hashimoto, Ki-ichiro; Koseki, Harutaka, Class numbers of definite unimodular Hermitian forms over the rings of imaginary quadratic fields, Tohoku Math. J. (2), 41, 1, 1-30 (1989) · Zbl 0668.10029 · doi:10.2748/tmj/1178227865
[30] \bysame , Class numbers of positive definite binary and ternary unimodular Hermitian forms, Tohoku Math. J. (2) 41 (1989), no. 2, 171-216. · Zbl 0668.10030
[31] Hayashida, Daiki, The characteristic polynomials of abelian varieties of higher dimension over finite fields, J. Number Theory, 196, 205-222 (2019) · Zbl 1454.11120 · doi:10.1016/j.jnt.2018.09.014
[32] B. Hemkemeier and F. Vallentin, Incremental algorithms for lattice problems, Electronic Colloquium on Computational Complexity, vol. 52, 1998, revision 1.
[33] Hoffmann, Detlev W., On positive definite Hermitian forms, Manuscripta Math., 71, 4, 399-429 (1991) · Zbl 0729.11020 · doi:10.1007/BF02568415
[34] Honda, Taira, Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan, 20, 83-95 (1968) · Zbl 0203.53302 · doi:10.2969/jmsj/02010083
[35] Howe, Everett W., Principally polarized ordinary abelian varieties over finite fields, Trans. Amer. Math. Soc., 347, 7, 2361-2401 (1995) · Zbl 0859.14016 · doi:10.2307/2154828
[36] Howe, Everett W.; Nart, Enric; Ritzenthaler, Christophe, Jacobians in isogeny classes of abelian surfaces over finite fields, Ann. Inst. Fourier (Grenoble), 59, 1, 239-289 (2009) · Zbl 1236.11058
[37] Ibukiyama, Tomoyoshi; Katsura, Toshiyuki; Oort, Frans, Supersingular curves of genus two and class numbers, Compositio Math., 57, 2, 127-152 (1986) · Zbl 0589.14028
[38] Ichikawa, Takashi, Theta constants and Teichm\"{u}ller modular forms, J. Number Theory, 61, 2, 409-419 (1996) · Zbl 0920.11029 · doi:10.1006/jnth.1996.0156
[39] Igusa, Jun-ichi, Modular forms and projective invariants, Amer. J. Math., 89, 817-855 (1967) · Zbl 0159.50401 · doi:10.2307/2373243
[40] Igusa, Jun-ichi, On the irreducibility of Schottky’s divisor, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28, 3, 531-545 (1982) (1981) · Zbl 0501.14026
[41] Igusa, Jun-ichi, Schottky’s invariant and quadratic forms. E. B. Christoffel, Aachen/Monschau, 1979, 352-362 (1981), Birkh\"{a}user, Basel-Boston, Mass. · Zbl 0482.10030
[42] Jacobowitz, Ronald, Hermitian forms over local fields, Amer. J. Math., 84, 441-465 (1962) · Zbl 0118.01901 · doi:10.2307/2372982
[43] Jordan, Bruce W.; Keeton, Allan G.; Poonen, Bjorn; Rains, Eric M.; Shepherd-Barron, Nicholas; Tate, John T., Abelian varieties isogenous to a power of an elliptic curve, Compos. Math., 154, 5, 934-959 (2018) · Zbl 1400.14116 · doi:10.1112/S0010437X17007990
[44] Kani, Ernst, Products of CM elliptic curves, Collect. Math., 62, 3, 297-339 (2011) · Zbl 1237.11027 · doi:10.1007/s13348-010-0029-1
[45] Kempf, George R., Linear systems on abelian varieties, Amer. J. Math., 111, 1, 65-94 (1989) · Zbl 0673.14023 · doi:10.2307/2374480
[46] M. Kirschmer, Definite quadratic and hermitian forms with small class number, Habilitation, RWTH Aachen University, 2016.
[47] Kirschmer, Markus, Determinant groups of Hermitian lattices over local fields, Arch. Math. (Basel), 113, 4, 337-347 (2019) · Zbl 1461.11059 · doi:10.1007/s00013-019-01348-z
[48] M. Kirschmer, F. Narbonne, C. Ritzenthaler, and D. Robert, Fromlatticestomodularforms, Computation of Modular Forms in the Isogeny Class Spanned by Products of Elliptic Curves, 4 2020. https://gitlab.inria.fr/roberdam/fromlatticestomodularforms.
[49] Kneser, Martin, Strong approximation. Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math., Boulder, Colo., 1965, 187-196 (1966), Amer. Math. Soc., Providence, R.I. · Zbl 0171.24105
[50] Koizumi, Shoji, Theta relations and projective normality of Abelian varieties, Amer. J. Math., 98, 4, 865-889 (1976) · Zbl 0347.14023 · doi:10.2307/2374034
[51] Lachaud, Gilles; Ritzenthaler, Christophe, On some questions of Serre on abelian threefolds. Algebraic geometry and its applications, Ser. Number Theory Appl. 5, 88-115 (2008), World Sci. Publ., Hackensack, NJ · Zbl 1151.14321 · doi:10.1142/9789812793430\_0005
[52] Lachaud, Gilles; Ritzenthaler, Christophe; Zykin, Alexey, Jacobians among abelian threefolds: a formula of Klein and a question of Serre, Math. Res. Lett., 17, 2, 323-333 (2010) · Zbl 1228.14028 · doi:10.4310/MRL.2010.v17.n2.a11
[53] Lario, Joan-C.; Somoza, Anna; Vincent, Christelle, An inverse Jacobian algorithm for Picard curves, Res. Number Theory, 7, 2, Paper No. 32, 23 pp. (2021) · Zbl 1482.14035 · doi:10.1007/s40993-021-00253-1
[54] K. Lauter, On maximal genus 3 curves over finite fields with an appendix by J. P. Serre, Compos. Math. 154 (2018), no. 5, 934-959.
[55] Lercier, Reynald; Ritzenthaler, Christophe, Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects, J. Algebra, 372, 595-636 (2012) · Zbl 1276.14088 · doi:10.1016/j.jalgebra.2012.07.054
[56] Lercier, Reynald; Ritzenthaler, Christophe; Rovetta, Florent; Sijsling, Jeroen, Parametrizing the moduli space of curves and applications to smooth plane quartics over finite fields, LMS J. Comput. Math., 17, suppl. A, 128-147 (2014) · Zbl 1333.14060 · doi:10.1112/S146115701400031X
[57] Liu, Qing, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics 6, xvi+576 pp. (2002), Oxford University Press, Oxford · Zbl 0996.14005
[58] E. Lorenzo Garc\'ia, On different expressions for invariants of hyperelliptic curves of genus 3, 2019, To appear in Journal of the Math. Soc. Japan.
[59] Lubicz, David; Robert, Damien, Computing isogenies between abelian varieties, Compos. Math., 148, 5, 1483-1515 (2012) · Zbl 1259.14047 · doi:10.1112/S0010437X12000243
[60] Lubicz, David; Robert, Damien, Computing separable isogenies in quasi-optimal time, LMS J. Comput. Math., 18, 1, 198-216 (2015) · Zbl 1309.14033 · doi:10.1112/S146115701400045X
[61] Lubicz, David; Robert, Damien, Arithmetic on abelian and Kummer varieties, Finite Fields Appl., 39, 130-158 (2016) · Zbl 1336.14030 · doi:10.1016/j.ffa.2016.01.009
[62] Marseglia, Stefano, Computing abelian varieties over finite fields isogenous to a power, Res. Number Theory, 5, 4, Paper No. 35, 17 pp. (2019) · Zbl 1457.11092 · doi:10.1007/s40993-019-0174-x
[63] Matsusaka, T., On a theorem of Torelli, Amer. J. Math., 80, 784-800 (1958) · Zbl 0100.35602 · doi:10.2307/2372783
[64] S. Meagher, Twists of genus \(3\) and their Jacobians, Ph.D. thesis, Rijksuniversiteit Groningen, 2008.
[65] Milne, J. S., Abelian varieties. Arithmetic geometry, Storrs, Conn., 1984, 103-150 (1986), Springer, New York · Zbl 0604.14028
[66] Moonen, Ben; Oort, Frans, The Torelli locus and special subvarieties. Handbook of moduli. Vol. II, Adv. Lect. Math. (ALM) 25, 549-594 (2013), Int. Press, Somerville, MA · Zbl 1322.14065
[67] Mumford, D., On the equations defining abelian varieties. I, Invent. Math., 1, 287-354 (1966) · Zbl 0219.14024 · doi:10.1007/BF01389737
[68] Mumford, D., On the equations defining abelian varieties. II, Invent. Math., 3, 75-135 (1967) · doi:10.1007/BF01389741
[69] Mumford, David, Tata lectures on theta. I, Modern Birkh\"{a}user Classics, xiv+235 pp. (2007), Birkh\"{a}user Boston, Inc., Boston, MA · Zbl 0549.14014 · doi:10.1007/978-0-8176-4578-6
[70] Mumford, David, Tata lectures on theta. II, Modern Birkh\"{a}user Classics, xiv+272 pp. (2007), Birkh\"{a}user Boston, Inc., Boston, MA · Zbl 0549.14014 · doi:10.1007/978-0-8176-4578-6
[71] Mumford, David, Tata lectures on theta. III, Modern Birkh\"{a}user Classics, viii+202 pp. (2007), Birkh\"{a}user Boston, Inc., Boston, MA · Zbl 0549.14014 · doi:10.1007/978-0-8176-4578-6
[72] Mumford, David, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics 5, xii+263 pp. (2008), Published for the Tata Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi · Zbl 1177.14001
[73] Mumford, D.; Fogarty, J.; Kirwan, F., Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)] 34, xiv+292 pp. (1994), Springer-Verlag, Berlin · Zbl 0797.14004 · doi:10.1007/978-3-642-57916-5
[74] O’Meara, O. T., Introduction to quadratic forms, Die Grundlehren der mathematischen Wissenschaften, Bd. 117, xi+342 pp. (1963), Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-G\"{o}ttingen-Heidelberg · Zbl 0107.03301
[75] Oort, Frans; Ueno, Kenji, Principally polarized abelian varieties of dimension two or three are Jacobian varieties, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 20, 377-381 (1973) · Zbl 0272.14008
[76] Oswal, Abhishek; Shankar, Ananth N., Almost ordinary abelian varieties over finite fields, J. Lond. Math. Soc. (2), 101, 3, 923-937 (2020) · Zbl 1469.11212 · doi:10.1112/jlms.12291
[77] Ritzenthaler, Christophe, Explicit computations of Serre’s obstruction for genus-3 curves and application to optimal curves, LMS J. Comput. Math., 13, 192-207 (2010) · Zbl 1278.11068 · doi:10.1112/S1461157009000576
[78] Ritzenthaler, Christophe, Optimal curves of genus 1, 2 and 3. Actes de la Conf\'{e}rence “Th\'{e}orie des Nombres et Applications”, Publ. Math. Besan\c{c}on Alg\`ebre Th\'{e}orie Nr. 2011, 99-117 (2011), Presses Univ. Franche-Comt\'{e}, Besan\c{c}on · Zbl 1283.11093
[79] D. Robert, Theta functions and cryptographic applications, Ph.D. thesis, Universit\'e Henri-Poincarr\'e, Nancy 1, France, 2010.
[80] Schiemann, Alexander, Classification of Hermitian forms with the neighbour method, J. Symbolic Comput., 26, 4, 487-508 (1998) · Zbl 0936.68129 · doi:10.1006/jsco.1998.0225
[81] Schiemann, Alexander, Classification of Hermitian forms with the neighbour method, J. Symbolic Comput., 26, 4, 487-508 (1998) · Zbl 0936.68129 · doi:10.1006/jsco.1998.0225
[82] Serre, Jean-Pierre, Rational points on curves over finite fields, Documents Math\'{e}matiques (Paris) [Mathematical Documents (Paris)] 18, 187 pp. (2020), Soci\'{e}t\'{e} Math\'{e}matique de France, Paris · Zbl 1475.11002
[83] Shimura, Goro, Arithmetic of unitary groups, Ann. of Math. (2), 79, 369-409 (1964) · Zbl 0144.29504 · doi:10.2307/1970551
[84] J. Sijsling, Curve reconstruction, Magma Code for Reconstructing Hyperelliptic Curves of Genus up to 3 from Their Period Matrices, December 2020. https://github.com/JRSijsling/curve_reconstruction.
[85] Streng, Marco, Computing Igusa class polynomials, Math. Comp., 83, 285, 275-309 (2014) · Zbl 1322.11066 · doi:10.1090/S0025-5718-2013-02712-3
[86] Sutherland, Andrew V., Computing Hilbert class polynomials with the Chinese remainder theorem, Math. Comp., 80, 273, 501-538 (2011) · Zbl 1231.11144 · doi:10.1090/S0025-5718-2010-02373-7
[87] Tate, John, Endomorphisms of abelian varieties over finite fields, Invent. Math., 2, 134-144 (1966) · Zbl 0147.20303 · doi:10.1007/BF01404549
[88] G. van der Geer, E. W. Howe, K. E. Lauter, and C. Ritzenthaler, Tables of curves with many points, 2009. See tables at https://manypoints.org
[89] Waterhouse, William C., Abelian varieties over finite fields, Ann. Sci. \'{E}cole Norm. Sup. (4), 2, 521-560 (1969) · Zbl 0188.53001
[90] H. Weber, Theory of abelian functions of genus 3 (Theorie der Abelschen Functionen vom Geschlecht 3), G. Reimer, Berlin, Germany, 1876. · JFM 08.0293.01
[91] Weng, Annegret, A class of hyperelliptic CM-curves of genus three, J. Ramanujan Math. Soc., 16, 4, 339-372 (2001) · Zbl 1066.11028
[92] Xue, Jiangwei; Yang, Tse-Chung; Yu, Chia-Fu, Supersingular abelian surfaces and Eichler’s class number formula, Asian J. Math., 23, 4, 651-680 (2019) · Zbl 1472.11187 · doi:10.4310/AJM.2019.v23.n4.a6
[93] Zaytsev, Alexey, Optimal curves of low genus over finite fields, Finite Fields Appl., 37, 203-224 (2016) · Zbl 1346.11037 · doi:10.1016/j.ffa.2015.09.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.