×

Abelian varieties isogenous to a power of an elliptic curve. (English) Zbl 1400.14116

Given an abelian category \(\mathcal C\), an object \(E \in \mathcal C\), a ring \(R\) and a ring homomorphhism \(R \rightarrow \mathrm{End} E\), there is a natural functor \({\mathcal Hom}(-,E)\) from the opposite category of the category of finitely presented left \(R\)-modules into \(\mathcal C\). The present paper studies the functor in the case of the category \(\mathcal C\) of commutative proper group schemes over a field \(k\), and elliptic curve \(E\) over \(k\) and the ring \(R = \mathrm{End} E\). Here the images of the functor are abelian varieties isogenous to a power of \(E\). In this case there is also a functor in the reverse direction. The main result of the paper is a complete answer to the question of when the two functors are equivalences of categories. An important notion is also that of a kernel subgroup of an abelian variety \(A\), which is defined as the subgroup scheme \(\bigcap_{\alpha \in I} \ker \alpha\) of \(A\) for a left ideal \(I \subset \mathrm{End} A\). In many cases the kernel subroups of an \(A\) isogenous to a power of \(E\) are determined. Examples are given showing that the functors are not always equivalences and that not every subgroup scheme of \(A\) is a kernel subgroup. Finally there is some partial extension to higher dimensional abelian varieties.

MSC:

14K15 Arithmetic ground fields for abelian varieties
11G10 Abelian varieties of dimension \(> 1\)
14K02 Isogeny
14K05 Algebraic theory of abelian varieties

References:

[1] Baker, M. H., González-Jiménez, E., González, J. and Poonen, B., Finiteness results for modular curves of genus at least 2, Amer. J. Math.127 (2005), 1325-1387. doi:10.1353/ajm.2005.0037 · Zbl 1127.11041
[2] Bass, H., On the ubiquity of Gorenstein rings, Math. Z., 82, 8-28, (1963) · Zbl 0112.26604 · doi:10.1007/BF01112819
[3] Borevič, Z. I. and Faddeev, D. K., Integral representations of quadratic rings, Vestik Leningrad Univ.15 (1960), 52-64. · Zbl 0095.02803
[4] Borevič, Z. I. and Faddeev, D. K., Representations of orders with a cyclic index, Proc. Steklov Inst. Math.80 (1965), 51-65; translated in Algebraic number theory and representations, ed. D. K. Faddeev (AMS, Washington, DC, 1968), pp. 56-72. · Zbl 0179.06101
[5] Bourbaki, N., Éléments de mathématique. Algèbre. Chapitres 1 á 3, (1970), Hermann: Hermann, Paris · Zbl 0211.02401
[6] Centeleghe, T. G. and Stix, J., Categories of abelian varieties over finite fields, I: Abelian varieties over F_{p}, Algebra Number Theory9 (2015), 225-265. doi:10.2140/ant.2015.9.225 · Zbl 1395.11102
[7] Deligne, P., Variétés abéliennes ordinaires sur un corp fini, Invent. Math., 8, 238-243, (1969) · Zbl 0179.26201 · doi:10.1007/BF01406076
[8] Eichler, M., Über die Idealklassenzahl hyperkomplexer Systeme, Math. Z., 43, 481-494, (1938) · Zbl 0018.20201 · doi:10.1007/BF01181104
[9] Giraud, J., Remarque sur une formule de Shimura-Taniyama, Invent. Math., 5, 231-236, (1968) · Zbl 0165.54801 · doi:10.1007/BF01425552
[10] Grothendieck, A., Techniques de construction et théorèmes d’existence en géomtrie algébrique III: préschemas quotients, Séminaire Bourbaki 13e année, 1960/61, no. 212. · Zbl 0235.14007
[11] Kani, E., Products of CM elliptic curves, Collect. Math., 62, 297-339, (2011) · Zbl 1237.11027 · doi:10.1007/s13348-010-0029-1
[12] Lam, T. Y., Lectures on modules and rings, (1999), Springer: Springer, New York · Zbl 0911.16001 · doi:10.1007/978-1-4612-0525-8
[13] Lang, S., Algebra, , revised 3rd edn (Springer, New York, 2002). doi:10.1007/978-1-4613-0041-0
[14] Lange, H., Produkte elliptischer Kurven, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 95-108, (1975) · Zbl 0317.14022
[15] Lauter, K., The maximum or minimum number of rational points on genus three curves over finite fields, with an appendix by J.-P. Serre, Compos. Math., 134, 87-111, (2002) · Zbl 1031.11038 · doi:10.1023/A:1020246226326
[16] Levy, L., Modules over Dedekind-like rings, J. Algebra, 93, 1-116, (1985) · Zbl 0564.13010 · doi:10.1016/0021-8693(85)90176-0
[17] Li, K.-Z. and Oort, F., Moduli of supersingular abelian varieties (Springer, Berlin, 1998). doi:10.1007/BFb0095931 · Zbl 0920.14021
[18] Mestre, J.-F., La méthode des graphes. Exemples et applications, in Proceedings of the international conference on class numbers and fundamental units of algebraic number fields, Katata, 1986 (Nagoya University, Nagoya, 1986), 217-242. · Zbl 0621.14021
[19] Mumford, D., Abelian varieties, (1970), Tata Institute of Fundamental Research and Oxford University Press: Tata Institute of Fundamental Research and Oxford University Press, Oxford · Zbl 0198.25801
[20] Ogus, A., Supersingular K3 crystals, in Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. II, (Société Mathématique de France, Paris, 1979), 3-86. · Zbl 0435.14003
[21] Oort, F., Which abelian surfaces are products of elliptic curves?, Math. Ann., 214, 35-47, (1975) · Zbl 0283.14007 · doi:10.1007/BF01428253
[22] Reiner, I., Maximal orders, (2003), Oxford University Press: Oxford University Press, Oxford · Zbl 1024.16008
[23] Salce, L., Warfield domains: module theory from linear algebra to commutative algebra through abelian groups, Milan J. Math., 70, 163-185, (2002) · Zbl 1054.13005 · doi:10.1007/s00032-002-0005-7
[24] Schoen, C., Produkte abelscher Varietäten und Moduln über Ordnungen, J. Reine Angew. Math., 429, 115-123, (1992) · Zbl 0744.14030
[25] Serre, J.-P., Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., 15, 259-331, (1972) · Zbl 0235.14012 · doi:10.1007/BF01405086
[26] Serre, J.-P., Rational points on curves over finite fields, Part I: ‘\(q\) large’. Lectures given at Harvard University, September to December 1985, notes taken by Fernando Gouvêa.
[27] Shioda, T., Supersingular K3 surfaces, in Algebraic geometry, Copenhagen 1978, , ed. Lønsted, K. (Springer, Berlin, 1979), 564-591. · Zbl 0414.14019
[28] Shioda, T. and Mitani, N., Singular abelian surfaces and binary quadratic forms, in Classification of algebraic varieties and compact complex manifolds, (Springer, Berlin, 1974), 259-287. doi:10.1007/BFb0066163 · Zbl 0302.14011
[29] Tate, J., Endomorphisms of abelian varieties over finite fields, Invent. Math., 2, 134-144, (1966) · Zbl 0147.20303 · doi:10.1007/BF01404549
[30] Waterhouse, W. C., Abelian varieties over finite fields, Ann. Sci. Éc. Norm. Supér. (4), 2, 521-560, (1969) · Zbl 0188.53001 · doi:10.24033/asens.1183
[31] Yu, C.-F., Superspecial abelian varieties over finite prime fields, J. Pure Appl. Algebra, 216, 1418-1427, (2012) · Zbl 1255.11031 · doi:10.1016/j.jpaa.2011.12.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.