×

Random sums of independent random vectors attracted by (semi)-stable hemigroups. (English) Zbl 1109.60014

Summary: Let \((X_n)\) be a sequence of independent not necessarily identically distributed random vectors belonging to the domain of attraction of a stable or semistable hemigroup, i.e., for an increasing sampling sequence \((k_n)\) such that \(k_{n+1}/ k_n\to c\geq 1\) and linear operators \(A_n\), the normalized sums \(A_n\sum^{\lfloor k_nt\rfloor}_{k=\lfloor k_ns \rfloor+1}X_k\) converge in distribution uniformly on compact subsets of \(\{0\leq s<t\}\) to some full probability \(\mu_{s,t}\). Suppose that \((T_n)\) is a sequence of positive integer valued random variables such that \(T_n/k_n\) converges in probability to some positive random variable, where we do not assume \((X_n)\) and \((T_n)\) to be independent. Then weak limit theorems of random sums, where the sampling sequence \((k_n)\) is replaced by random sample sizes \((T_n)\), are presented.

MSC:

60F05 Central limit and other weak theorems
60E07 Infinitely divisible distributions; stable distributions
Full Text: DOI

References:

[1] Anscombe F. J., Proc. Cambridge Philos. Soc. 48 pp 600– (1952) · doi:10.1017/S0305004100076386
[2] Becker-Kern P., J. Math. Sci. 111 pp 3820– (2002) · Zbl 1016.60027 · doi:10.1023/A:1016522316478
[3] Becker-Kern P., J. Theoret. Probab. 16 pp 573– (2003) · Zbl 1029.60010 · doi:10.1023/A:1025664314657
[4] Blum J. R., Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1 pp 389– (1962) · Zbl 0109.36402 · doi:10.1007/BF00533414
[5] Csörgo M., Math. Proc. Cambridge Philos. Soc. 88 pp 171– (1980) · Zbl 0441.60030 · doi:10.1017/S0305004100057467
[6] Gleser L. J., Ann. Math. Statist. 40 pp 935– (1969) · Zbl 0181.45001 · doi:10.1214/aoms/1177697598
[7] Guiasu S., Ann. Math. Statist. 42 pp 2018– (1971) · Zbl 0229.60026 · doi:10.1214/aoms/1177693069
[8] Hazod W., J. Math. Sci. 93 pp 531– (1999) · Zbl 0942.60012 · doi:10.1007/BF02365059
[9] Hazod W., J. Math. Sci. 111 pp 3830– (2002) · Zbl 1018.60005 · doi:10.1023/A:1016574300548
[10] Hudson W. N., Trans. Amer. Math. Soc. 273 pp 281– (1982) · doi:10.1090/S0002-9947-1982-0664042-7
[11] Kimbleton S. R., J. Appl. Probab. 7 pp 502– (1970) · Zbl 0204.51103 · doi:10.2307/3211990
[12] Krajka A., Comment. Math. Univ. Carolin. 34 pp 465– (1993)
[13] Kubacki K. S., Bull. Polish Acad. Sci. Math. 32 pp 201– (1985)
[14] Maejima M., J. Theoret. Probab. 12 pp 347– (1999) · Zbl 0932.60043 · doi:10.1023/A:1021621926463
[15] Maejima M., Statist. Probab. Lett. 47 pp 395– (2000) · Zbl 0955.60038 · doi:10.1016/S0167-7152(99)00184-4
[16] Meerschaert M. M., Theoret. Probab. 10 pp 51– (1997) · Zbl 0870.60011 · doi:10.1023/A:1022638213920
[17] Mogyoródi J., Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 pp 409– (1962)
[18] Rényi A., Acta Math. Acad. Sci. Hungar. 11 pp 97– (1960) · Zbl 0091.14205 · doi:10.1007/BF02020627
[19] Sato K., Probab. Theory Related Fields 89 pp 285– (1991) · Zbl 0725.60034 · doi:10.1007/BF01198788
[20] Sato K., J. Korean Math. Soc. 35 pp 207– (1998)
[21] Siegel G., Statistics 17 pp 121– (1986) · Zbl 0601.60027 · doi:10.1080/02331888608801918
[22] Silvestrov D. S., Theory Probab. Appl. 17 pp 669– (1972) · Zbl 0289.60019 · doi:10.1137/1117079
[23] Wittenberg H., Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 pp 7– (1964) · Zbl 0125.08601 · doi:10.1007/BF00531680
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.