×

Exponents, symmetry groups and classification of operator fractional Brownian motions. (English) Zbl 1259.60041

Authors’ abstract: Operator fractional Brownian motions (OFBMs) are zero-mean operator self-similar (o.s.s.) Gaussian processes with stationary increments. They generalize univariate fractional Brownian motions to the multivariate context. It is well-known that the so-called symmetry group of an o.s.s. process is conjugate to subgroups of the orthogonal group. Moreover, by a celebrated result of Hudson and Mason, the set of all exponents of an operator self-similar process can be related to the tangent space of its symmetry group.
In this paper, we revisit and study both the symmetry groups and exponent sets for the class of OFBMs based on their spectral domain integral representations. A general description of the symmetry groups of OFBMs in terms of subsets of centralizers of the spectral domain parameters is provided. OFBMs with symmetry groups of maximal and minimal types are studied in any dimension. In particular, it is shown that OFBMs have minimal symmetry groups (and thus unique exponents) in general, in the topological sense. Finer classification results of OFBMs, based on the explicit construction of their symmetry groups, are given in the lower dimensions 2 and 3. It is also shown that the parametrization of spectral domain integral representations are, in a suitable sense, not affected by multiplicity of exponents, whereas the same is not true for time domain integral representations.

MSC:

60G22 Fractional processes, including fractional Brownian motion
60G18 Self-similar stochastic processes

References:

[1] Bahadoran, C., Benassi, A., Debicki, K.: Operator-self-similar Gaussian processes with stationary increments. Preprint (2003). Available at http://math.univ-bpclermont.fr/prepublications/2003/2003-03.ps
[2] Becker-Kern, P., Pap, G.: Parameter estimation of selfsimilarity exponents. J. Multivar. Anal. 99, 117–140 (2008) · Zbl 1333.62149 · doi:10.1016/j.jmva.2007.04.003
[3] Billingsley, P.: Convergence of types in k-spaces. Z. Wahrscheinlichkeitstheor. Verw. Geb. 5, 175–179 (1966) · Zbl 0152.17102 · doi:10.1007/BF00536653
[4] Bingham, N., Goldie, C., Teugels, J.: Regular Variation. Cambridge University Press, Cambridge (1987) · Zbl 0617.26001
[5] Didier, G.: Studies in Stochastic Processes: Adaptive Wavelet Decompositions and Operator Fractional Brownian Motions. PhD thesis, University of North Carolina at Chapel Hill, Chapel Hill, NC (2007)
[6] Didier, G., Pipiras, V.: Integral representations and properties of operator fractional Brownian motions. Bernoulli 17(1), 1–33 (2011) · Zbl 1284.60079 · doi:10.3150/10-BEJ259
[7] Embrechts, P., Maejima, M.: Selfsimilar Processes. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2002) · Zbl 1008.60003
[8] Gantmacher, F.R.: The Theory of Matrices, vol. 1. AMS Chelsea Publishing, Providence (1959). Translated from the Russian by K.A. Hirsch, Reprint of the 1959 translation · Zbl 0085.01001
[9] Hausner, M., Schwartz, J.: Lie Groups; Lie Algebras. Notes on Mathematics and its Applications. Gordon and Breach, New York (1968) · Zbl 0192.35902
[10] Hoffman, K.H., Morris, S.A.: The Structure of Compact Groups. de Gruyter, Berlin (1998)
[11] Hudson, W., Mason, J.: Operator-stable laws. J. Multivar. Anal. 11(3), 434–447 (1981) · Zbl 0466.60016 · doi:10.1016/0047-259X(81)90086-5
[12] Hudson, W., Mason, J.: Operator-self-similar processes in a finite-dimensional space. Trans. Am. Math. Soc. 273(1), 281–297 (1982) · Zbl 0508.60044 · doi:10.1090/S0002-9947-1982-0664042-7
[13] Jurek, Z., Mason, J.: Operator-Limit Distributions in Probability Theory. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1993) · Zbl 0850.60003
[14] Laha, R.G., Rohatgi, V.K.: Operator self-similar stochastic processes in R d . Stoch. Process. Appl. 12(1), 73–84 (1981) · Zbl 0472.60006 · doi:10.1016/0304-4149(81)90012-0
[15] Lavancier, F., Philippe, A., Surgailis, D.: Covariance function of vector self-similar processes. Stat. Probab. Lett. 79, 2415–2421 (2009) · Zbl 1177.60041 · doi:10.1016/j.spl.2009.08.015
[16] Lax, P.: Linear Algebra and its Applications. Wiley, New York (2007) · Zbl 1152.15001
[17] Liao, M.: Symmetry groups of Markov processes. Ann. Probab. 20(2), 563–578 (1992) · Zbl 0755.60061 · doi:10.1214/aop/1176989791
[18] MacDuffee, C.C.: The Theory of Matrices. Chelsea, New York (1946) · Zbl 0007.19507
[19] Maejima, M.: Limit theorems related to a class of operator-self-similar processes. Nagoya J. Math. 142, 161–181 (1996) · Zbl 0865.60033
[20] Maejima, M.: Norming operators for operator self-similar processes. In: Stochastic Processes and Related Topics. Trends Math., pp. 287–295. Birkhäuser, Boston (1998) · Zbl 1008.60504
[21] Maejima, M., Mason, J.: Operator-self-similar stable processes. Stoch. Process. Appl. 54, 139–163 (1994) · Zbl 0814.60032 · doi:10.1016/0304-4149(94)00010-7
[22] Mason, J., Xiao, Y.: Sample path properties of operator-self-similar Gaussian random fields. Theory Probab. Appl. 46(1), 58–78 (2002) · Zbl 0993.60039 · doi:10.1137/S0040585X97978749
[23] Meerschaert, M., Scheffler, H.-P.: Spectral decomposition for operator self-similar processes and their generalized domains of attraction. Stoch. Process. Appl. 84, 71–80 (1999) · Zbl 0997.60013 · doi:10.1016/S0304-4149(99)00048-4
[24] Meerschaert, M.M., Scheffler, H.-P.: Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice. Wiley Series in Probability and Statistics. Wiley, New York (2001) · Zbl 0990.60003
[25] Meerschaert, M., Veeh, J.: The structure of the exponents and symmetries of an operator stable measure. J. Theor. Probab. 4, 713–726 (1993) · Zbl 0839.60018 · doi:10.1007/BF01049173
[26] Meerschaert, M., Veeh, J.: Symmetry groups in d-space. Stat. Probab. Lett. 1, 1–6 (1995) · Zbl 0814.60012 · doi:10.1016/0167-7152(94)00039-B
[27] Pitt, L.D.: Scaling limits of Gaussian vectors fields. J. Multivar. Anal. 8, 45–54 (1978) · Zbl 0382.60056 · doi:10.1016/0047-259X(78)90018-0
[28] Sato, K.: Self-similar processes with independent increments. Probab. Theory Relat. Fields 89, 285–300 (1991) · Zbl 0725.60034 · doi:10.1007/BF01198788
[29] Sharpe, M.: Operator-stable probability distributions on vector groups. Trans. Am. Math. Soc. 136(2), 51–65 (1969) · Zbl 0192.53603 · doi:10.1090/S0002-9947-1969-0238365-3
[30] Suprunenko, D.A., Tyshkevich, R.I.: Commutative Matrices. Academic Press, New York (1968)
[31] Taussky, O.: Commutativity in finite matrices. Am. Math. Mon. 64(4), 229–235 (1953) · Zbl 0081.25002 · doi:10.2307/2310421
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.