×

Complexity of nilpotent orbits and the Kostant-Sekiguchi correspondence. (English) Zbl 1077.22018

Let \(G\) be a connected linear semisimple Lie group. The author proves that, if \((\Omega, \mathcal O)\) is a Kostant-Sekiguchi pair, then the corank of the Hamiltonian \(K\)-space is twice the complexity of the \(K_{\mathbb C}\) variety \(\mathcal{O}.\) Among others, a consequence is derived, which could be used for the computation of the rank and the complexity of \(\mathcal{O}\) in certain cases. The main tool used is a result of Vergne, namely that there is a \(K\)-equivariant diffeomorphism which maps \(\Omega\) onto \(\mathcal{O}.\)

MSC:

22E46 Semisimple Lie groups and their representations
14R20 Group actions on affine varieties
53D20 Momentum maps; symplectic reduction

References:

[1] Guillemin, V., Sternberg, S.: Multiplicity-free spaces. J. Differ. Geom. 19, 31–56 (1984) · Zbl 0548.58017
[2] Guillemin, V., Sternberg, S.: Symplectic techniques in physics, Cambridge University Press, 1984 · Zbl 0576.58012
[3] Heckman, G.J.: Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups. Invent. Math. 67, 333–356 (1982) · Zbl 0497.22006 · doi:10.1007/BF01393821
[4] Huckleberry, A.T., Wurzbacher, T.: Multiplicity-free complex manifolds. Math. Ann. 286, 261–280 (1990) · Zbl 0765.32016 · doi:10.1007/BF01453576
[5] Karshon, Y.: Hamiltonian actions of Lie groups. PhD thesis, Harvard University, Cambridge, Massachusetts, 1993
[6] King, D.R.: Spherical Nilpotent Orbits and the Kostant-Sekiguchi Correspondence. Trans. Am. Math Soc. 354 (12), 4909–4920 (2002) · Zbl 1009.22013 · doi:10.1090/S0002-9947-02-03089-1
[7] Mykytyuk, I.V.: Actions of Borel Subgroups on Homogeneous Spaces of Reductive Complex Lie Groups and Integrability. Compos. Math. 127 (1), 55–67 (2001) · Zbl 0984.22020 · doi:10.1023/A:1017555611041
[8] Panyushev, D.I.: Complexity and nilpotent orbits. Manuscr. Math. 83, 223–237 (1994) · Zbl 0822.14024 · doi:10.1007/BF02567611
[9] Panyushev, D.I.: Complexity and rank of actions in invariant theory. J. Math. Sci. New York 95 (1), 1925–1985 (1999) · Zbl 0996.14022 · doi:10.1007/BF02169155
[10] Panyushev, D.I.: Complexity and rank of homogeneous spaces. Geom. Dedicata 34, 249–269 (1990) · Zbl 0706.14032 · doi:10.1007/BF00181688
[11] Richardson, R.W. Jr.: Principal orbit types for algebraic transformation spaces in characteristic zero. Invent. Math. 16, 6–14 (1972) · Zbl 0242.14010 · doi:10.1007/BF01391211
[12] Schmid, W., Vilonen, K.: The geometry of nilpotent orbits. Asian J. Math. 3 (1), 233–274 (1999) · Zbl 0956.22007
[13] Vergne, M.: Instantons et correspondance de Kostant-Sekiguchi. C. R. Acad. Sci. Paris Ser. 1 320, 901–906 (1995) · Zbl 0833.22010
[14] Vergne, M.: Polynomes de Joseph et représentation de Springer, Ann. Sci. Ec. Norm. Super. iv. Ser. 23 (4), 543–562 (1990) · Zbl 0718.22009
[15] Vinberg, E.B.: Commutative homogeneous spaces and co-isotropic symplectic actions. Russ. Math. Surv. 56 (1), 1–60 (2001) · Zbl 0996.53034 · doi:10.1070/RM2001v056n01ABEH000356
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.