×

Joseph polynomials and Springer representation. (Polynômes de Joseph et représentation de Springer.) (French) Zbl 0718.22009

Let \(G\) be a complex connected semisimple Lie group, let \(\mathfrak g\) be the Lie algebra of \(G\) and let \(D\) be the flag manifold of all Borel subalgebras of \(\mathfrak g\). If \(\mathfrak b\in D\), \(\mathfrak b=\mathfrak h\oplus \mathfrak n\) and \(u\in\mathfrak n\) is a nilpotent element, consider its orbit \(O_ u\) in \(\mathfrak g\), related to the action of the adjoint group. Denote by \(C\) an irreducible component of the manifold \(O_ u\cap \mathfrak n\) and consider \(D(C)=\{x\in D: x\in gx_ 0,\;g^{-1}u\in C\}\).
Using a variant of the method given by A. Joseph [Ann. Sci. Ec. Norm. Supér. (4) 22, No. 4, 569–603 (1989; Zbl 0695.17003)] and some ideas contained in the papers of W. Rossmann [J. Funct. Anal. 96, No. 1, 130–154 (1991; Zbl 0755.22004), 155–193 (1991; Zbl 0755.22005)] the author obtains a new proof for the proportionality of the Joseph and Springer polynomials, i.e. the following formula: \[ \bigl(\prod_{\alpha >0}(\alpha,\rho)\bigr)^{-1}J_ C(X)=m(u)S_{D(C)}(X) \] where \(m(u)=\int_{O_ u}\exp (-\| y\|^ 2/4)\,d\beta_ u\). Note that in the above equality the proportionality coefficient is really determined.

MSC:

22E46 Semisimple Lie groups and their representations
22E10 General properties and structure of complex Lie groups
17B08 Coadjoint orbits; nilpotent varieties
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)

References:

[1] N. BERLINE et M. VERGNE , The equivariant index and Kirillov character formula (Am. J. Math., vol. 107, 1985 , p. 1159-1190). MR 87a:58143 | Zbl 0604.58046 · Zbl 0604.58046 · doi:10.2307/2374350
[2] N. BERLINE , E. GETZLER et M. VERGNE , Heat kernels and Dirac operators , (à paraître). · Zbl 1037.58015
[3] A. BOREL , Sur la cohomologie des espaces fibrés principaux et des espaces homogènes des groupes de Lie compacts (Ann. Math., vol. 57, 1953 , p. 115-207). MR 14,490e | Zbl 0052.40001 · Zbl 0052.40001 · doi:10.2307/1969728
[4] W. BORHO , J. L. BRYLINSKI and R. MACPHERSON , Springer’s Weyl group representations through characteristic classes of cone bundles , (Math. Ann., vol. 278, 1987 , p. 273-289). MR 89g:17010 | Zbl 0624.14015 · Zbl 0624.14015 · doi:10.1007/BF01458071
[5] H. CARTAN , La transgression dans un groupe de Lie et dans un espace fibré principal . Dans ”Colloque de Topologie” (C.B.R.M., Bruxelles, 1950 , p. 57-71). MR 13,107f | Zbl 0045.30701 · Zbl 0045.30701
[6] M. DUFLO et M. VERGNE , Cohomologie équivariante et méthode des orbites (à paraître, “The orbit Method in Representation theory” Progress in Mathematics, Birkhaüser-Boston). · Zbl 0192.37402
[7] V. GINSBURG , Intégrales sur les orbites nilpotentes et représentations de groupes de Weyl (C.R. Acad. Sci., Paris, vol. 296, 1983 , p. 249-252). MR 85b:22019 | Zbl 0544.22009 · Zbl 0544.22009
[8] V. GINSBURG , g-modules, Springer’s representations and bivariant Chern classes (Adv. Math., vol. 59, 1986 , p. 1-48. MR 87k:17014 | Zbl 0601.22008 · Zbl 0601.22008 · doi:10.1016/0001-8708(86)90064-2
[9] R. HOTTA , On Joseph’s construction of Weyl group representations (Tohoku Math. J., vol. 36, 1984 , p. 49-74). Article | MR 86h:20061 | Zbl 0545.20029 · Zbl 0545.20029 · doi:10.2748/tmj/1178228903
[10] M. KASHIWARA et T. MONTEIRO-FERNANDES , Involutivité des variétés microcaractéristiques (Bull. Soc. Math. France, vol. 114, 1986 , p. 393-402). Numdam | MR 88c:58061 | Zbl 0619.35009 · Zbl 0619.35009
[11] R. HOTTA et M. KASHIWARA , The invariant holonomic system on a semisimple Lie algebra (Inventiones Mathematicae, vol. 75, 1984 , p. 327-358). MR 87i:22041 | Zbl 0538.22013 · Zbl 0538.22013 · doi:10.1007/BF01388568
[12] A. JOSEPH , On the variety of a highest weight module (J. Alg., vol. 88, 1984 , p. 238-278). MR 85j:17014 | Zbl 0539.17006 · Zbl 0539.17006 · doi:10.1016/0021-8693(84)90100-5
[13] A. JOSEPH , On the characteristic polynomials of orbital varieties (Ann. Scient. Ec. Norm. Sup. (à paraître)). Numdam | Zbl 0695.17003 · Zbl 0695.17003
[14] M. KASHIWARA et T. MONTEIRO-FERNANDES , Involutivité des variétés microcaractéristiques (Bull. Soc. Math., France, vol. 114, 1986 , p. 393-402). Numdam | MR 88c:58061 | Zbl 0619.35009 · Zbl 0619.35009
[15] V. MATHAI et D. QUILLEN , Superconnections, Thom classes and equivariant differential forms (Topology, vol. 25, 1986 , p. 85-110). MR 87k:58006 | Zbl 0592.55015 · Zbl 0592.55015 · doi:10.1016/0040-9383(86)90007-8
[16] W. ROSSMANN , Invariant eigendistributions on a complex Lie algebra and homology classes on the conormal varieties I, II (preprint 1986 ), à paraître dans J. Funct. Anal. · Zbl 0755.22005
[17] W. ROSSMANN , Equivariant multiplicities on complex varieties . Dans Orbites unipotentes et Représentations III. Astérisque, (à paraître). Zbl 0691.32004 · Zbl 0691.32004
[18] N. SPALTENSTEIN , On the fixed point set of a unipotent element on the variety of Borel subgroups (Topology, vol. 16, 1977 , p. 203-204). MR 56 #5735 | Zbl 0445.20021 · Zbl 0445.20021 · doi:10.1016/0040-9383(77)90022-2
[19] T. A. SPRINGER , Trigonometric sums, Green functions of finite groups and representations of Weyl group (Invent. Mathematicae, vol. 36, 1976 , p. 173-207). MR 56 #491 | Zbl 0374.20054 · Zbl 0374.20054 · doi:10.1007/BF01390009
[20] T. A. SPRINGER , A construction of representations of Weyl groups (Invent. Mathematicae, vol. 44, 1978 , p. 279-293). MR 58 #11154 | Zbl 0376.17002 · Zbl 0376.17002 · doi:10.1007/BF01403165
[21] R. STEINBERG , Conjugacy classes in algebraic groups (Lect. Notes Math., vol. 366, (Springer-Verlag), 1974 . MR 50 #4766 | Zbl 0281.20037 · Zbl 0281.20037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.