×

On finite generation of the section ring of the determinant of cohomology line bundle. (English) Zbl 1433.14027

Let \(C\) be a stable (projective) curve of arithmetic genus \(g \ge 2\).over complex numbers. Let \(Bun_G(C)\) denote the stack of principal \(G\)-bundles on \(C\), \(G\) being a simple, simply connected, complex linear algebraic group. Let \(D = D(V)\) denote the determinant of cohomology line bundle on \(\mathrm{Bun}_G(C)\) associated to a linear representation \(G \to \mathrm{GL}(V)\), for \(G = \mathrm{SL}(r)\) one takes the standard representation.
Main Theorem 1. For \(G = \mathrm{SL}(r)\), the section ring \[A^C_{\bullet} := \bigoplus_{m \in {\mathbb Z}\ge 0} H^0(\mathrm{Bun}_{\mathrm{SL}(r)}(C), D^{\otimes m})\] is finitely generated. As an application, the authors prove the following theorem.
Theorem 2. Let \(\overline{\mathcal M}_g\) denote the Deligne-Mumford compactification of the moduli space \(\mathcal{M}_g\) of smooth curves of genus \(g\). There is a flat family \(p: \chi \rightarrow \overline{\mathcal M}_g\), with \(\chi\) relatively projective over \(\overline{\mathcal M}_g\) such that \(\chi_{\mathbb{C}} \cong \mathrm{Proj}(A^C_{\bullet})\) is integral, normal and irreducible for \([C] \in \overline{\mathcal M}_g\), and \(\chi_{\mathbb C} \cong \mathrm{SU}_C(r)\) for \([C] \in \mathcal M_g\) where \(\mathrm{SU}_C(r)\) is the moduli space parametrising semistable vector bundles of rank \(r\) and degree \(0\) on \(C\).
It is well known that for a smooth curve \(C\), \(H^0(\mathrm{Bun}_{\mathrm{SL}(r)}(C), D^{\otimes m}) \cong H^0(\mathrm{SU}_C(r), \theta^{\otimes m})\),
Let g denote the Lie algebra of \(G\). For an integer \(\ell\), let \(\overline{\lambda}= (\lambda_1, \cdots, \lambda_n)\) be an \(n\)-tuple of dominant integral weights of \(\textbf{g}\) at level \(\ell\). Associated to this data, there is a vector bundle of conformal blocks, denoted by \(\mathbb{V}(\textbf{g}, \overline{\lambda}, \ell)\). It is a vector bundle over \(\overline{\mathcal{M}_{g,n}}\), the moduli space of \(n\)-pointed semistable curves. The authors show that the fibres of this bundle may be interpreted as the space of sections of a line bundle \(\mathcal{L}_G(C, \overline{p}, \overline{\lambda})\) on the stack parametrising generalised parabolic \(G\)-bundles on \(C\).
As a second application of Theorem 1, they show that under certain assumptions there are geometric interpretations for fibres of \(\mathbb{V}(sl_r, \ell)\vert^*_C\) at singular stable curves \([C] \in \overline{\mathcal{M}}_g\), as global sections of a line bundle on a projective variety.

MSC:

14H60 Vector bundles on curves and their moduli
14D20 Algebraic moduli problems, moduli of vector bundles
14L24 Geometric invariant theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

References:

[1] Agnihotri, S.; Woodward, C., Eigenvalues of products of unitary matrices and quantum {S}chubert calculus, Math. Res. Lett., 5, 6, 817-836 (1998) · Zbl 1004.14013
[2] Alper, Jarod, Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble), 63, 6, 2349-2402 (2013) · Zbl 1314.14095
[3] Altman, Allen B.; Kleiman, Steven L., Compactifying the Picard scheme, Adv. in Math., 35, 1, 50-112 (1980) · Zbl 0427.14015 · doi:10.1016/0001-8708(80)90043-2
[4] Beauville, Arnaud; Laszlo, Yves, Conformal blocks and generalized theta functions, Comm. Math. Phys., 164, 2, 385-419 (1994) · Zbl 0815.14015
[5] Belkale, Prakash, Local systems on {\( \mathbb P^1-S\)} for {\(S\)} a finite set, Compositio Math., 129, 1, 67-86 (2001) · Zbl 1042.14031
[6] Belkale, Prakash, Quantum generalization of the Horn conjecture, J. Amer. Math. Soc., 21, 2, 365-408 (2008) · Zbl 1134.14029 · doi:10.1090/S0894-0347-07-00584-X
[7] Belkale, Prakash; Fakhruddin, Nakhmuddin, Triviality properties of principal bundles on singular curves, arXiv:1509.06425 [math.AG] (2015). Algebraic Geometry (to appear) · Zbl 1444.14036
[8] Belkale, Prakash; Gibney, Angela; Kazanova, Anna, Scaling of conformal blocks and generalized theta functions over {\( \overline{\mathcal{M}}_{g,n} \)}, Math. Z., 284, 3-4, 961-987 (2016) · Zbl 1388.14079
[9] Belkale, Prakash; Kumar, Shrawan, The multiplicative eigenvalue problem and deformed quantum cohomology, Adv. Math., 288, 1309-1359 (2016) · Zbl 1329.81177
[10] Bhosle, Usha N., Vector bundles with a fixed determinant on an irreducible nodal curve, Proc. Indian Acad. Sci. Math. Sci., 115, 4, 445-451 (2005) · Zbl 1096.14027 · doi:10.1007/BF02829806
[11] Bhosle, Usha N., Vector bundles on curves with many components, Proc. London Math. Soc. (3), 79, 1, 81-106 (1999) · Zbl 1024.14014
[12] Caporaso, Lucia, A compactification of the universal {P}icard variety over the moduli space of stable curves, J. Amer. Math. Soc., 7, 3, 589-660 (1994) · Zbl 0827.14014
[13] Henri Cartan, S\'{e}minaire P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot; 11e ann\'{e}e: 1957/1958. Alg\`“ebre et th\'”{e}orie des nombres, 2 Vols, Vol. 1. iii+146 pp.; Vol. 2. iii+128 pp. (mimeographed) pp. (1958), Secr\'{e}tariat math\'{e}matique, 11 rue Pierre Curie, Paris
[14] Deligne, P.; Mumford, D., The irreducibility of the space of curves of given genus, Inst. Hautes \'{E}tudes Sci. Publ. Math., 36, 75-109 (1969) · Zbl 0181.48803
[15] Drezet, J.-M.; Narasimhan, M. S., Groupe de {P}icard des vari\'et\'es de modules de fibr\'es semi-stables sur les courbes alg\'ebriques, Invent. Math., 97, 1, 53-94 (1989) · Zbl 0689.14012
[16] D’Souza, Cyril, Compactification of generalised Jacobians, Proc. Indian Acad. Sci. Sect. A Math. Sci., 88, 5, 419-457 (1979) · Zbl 0442.14016
[17] Edidin, Dan; Graham, William, Riemann-Roch for equivariant Chow groups, Duke Math. J., 102, 3, 567-594 (2000) · Zbl 0997.14002 · doi:10.1215/S0012-7094-00-10239-6
[18] Edidin, Dan, Equivariant geometry and the cohomology of the moduli space of curves. Handbook of moduli. Vol. I, Adv. Lect. Math. (ALM) 24, 259-292 (2013), Int. Press, Somerville, MA · Zbl 1322.14003
[19] Fakhruddin, Najmuddin, Chern classes of conformal blocks. Compact moduli spaces and vector bundles, Contemp. Math. 564, 145-176 (2012), Amer. Math. Soc., Providence, RI · Zbl 1244.14007 · doi:10.1090/conm/564/11148
[20] Faltings, Gerd, Stable \(G\)-bundles and projective connections, J. Algebraic Geom., 2, 3, 507-568 (1993) · Zbl 0790.14019
[21] Faltings, Gerd, A proof for the Verlinde formula, J. Algebraic Geom., 3, 2, 347-374 (1994) · Zbl 0809.14009
[22] Faltings, Gerd, Moduli-stacks for bundles on semistable curves, Math. Ann., 304, 3, 489-515 (1996) · Zbl 0847.14018
[23] Faltings, Gerd; Chai, Ching-Li, Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 22, xii+316 pp. (1990), Springer-Verlag, Berlin · Zbl 0744.14031 · doi:10.1007/978-3-662-02632-8
[24] Fulton, William, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 2, xiv+470 pp. (1998), Springer-Verlag, Berlin · Zbl 0885.14002 · doi:10.1007/978-1-4612-1700-8
[25] Gieseker, D., A degeneration of the moduli space of stable bundles, J. Differential Geom., 19, 1, 173-206 (1984) · Zbl 0557.14008
[26] G\"{o}rtz, Ulrich; Wedhorn, Torsten, Algebraic geometry I, Advanced Lectures in Mathematics, viii+615 pp. (2010), Vieweg + Teubner, Wiesbaden · Zbl 1213.14001 · doi:10.1007/978-3-8348-9722-0
[27] Grothendieck, A., \'{E}l\'{e}ments de g\'{e}om\'{e}trie alg\'{e}brique. II. \'{E}tude globale \'{e}l\'{e}mentaire de quelques classes de morphismes, Inst. Hautes \'{E}tudes Sci. Publ. Math., 8, 222 pp. (1961)
[28] Grothendieck, A., \'{E}l\'{e}ments de g\'{e}om\'{e}trie alg\'{e}brique. IV. \'{E}tude locale des sch\'{e}mas et des morphismes de sch\'{e}mas. III, Inst. Hautes \'{E}tudes Sci. Publ. Math., 28, 255 pp. (1966) · Zbl 0144.19904
[29] Hartshorne, Robin, Stable reflexive sheaves, Math. Ann., 254, 2, 121-176 (1980) · Zbl 0431.14004
[30] Hartshorne, Robin, Algebraic geometry, Graduate Texts in Mathematics 52, xvi+496 pp. (1977), Springer-Verlag, New York\textendash Heidelberg · Zbl 0367.14001
[31] Xia, Huashi, Degenerations of moduli of stable bundles over algebraic curves, Compositio Math., 98, 3, 305-330 (1995) · Zbl 0856.14008
[32] Hu, Yi; Keel, Sean, Mori dream spaces and GIT, Michigan Math. J., 48, 331-348 (2000) · Zbl 1077.14554 · doi:10.1307/mmj/1030132722
[33] Igusa, Jun-ichi, Fibre systems of Jacobian varieties, Amer. J. Math., 78, 171-199 (1956) · Zbl 0074.15803 · doi:10.2307/2372489
[34] Ishida, Masa-Nori, Compactifications of a family of generalized Jacobian varieties. Proceedings of the International Symposium on Algebraic Geometry, Kyoto Univ., Kyoto, 1977, 503-524 (1978), Kinokuniya Book Store, Tokyo · Zbl 0415.14015
[35] Jacobson, Nathan, Basic algebra. I, xvi+472 pp. (1974), W. H. Freeman and Co., San Francisco, Calif. · Zbl 0284.16001
[36] Kleiman, Steven L., The Picard scheme. Fundamental algebraic geometry, Math. Surveys Monogr. 123, 235-321 (2005), Amer. Math. Soc., Providence, RI · Zbl 1085.14001
[37] Kumar, Shrawan; Narasimhan, M. S.; Ramanathan, A., Infinite Grassmannians and moduli spaces of \(G\)-bundles, Math. Ann., 300, 1, 41-75 (1994) · Zbl 0803.14012 · doi:10.1007/BF01450475
[38] Kung, Joseph P. S.; Rota, Gian-Carlo, The invariant theory of binary forms, Bull. Amer. Math. Soc. (N.S.), 10, 1, 27-85 (1984) · Zbl 0577.15020 · doi:10.1090/S0273-0979-1984-15188-7
[39] Laszlo, Yves; Sorger, Christoph, The line bundles on the moduli of parabolic \(G\)-bundles over curves and their sections, Ann. Sci. \'{E}cole Norm. Sup. (4), 30, 4, 499-525 (1997) · Zbl 0918.14004 · doi:10.1016/S0012-9593(97)89929-6
[40] Manon, Christopher, The algebra of conformal blocks, arXiv:0910.0577 (2009) · Zbl 1428.14019
[41] Manon, Christopher, The algebra of \(\text{SL}_3(\mathbb{C})\) conformal blocks, Transform. Groups, 18, 4, 1165-1187 (2013) · Zbl 1327.14055 · doi:10.1007/s00031-013-9240-y
[42] Manon, Christopher, Coordinate rings for the moduli stack of \(SL_2(\mathbb{C})\) quasi-parabolic principal bundles on a curve and toric fiber products, J. Algebra, 365, 163-183 (2012) · Zbl 1262.14011 · doi:10.1016/j.jalgebra.2012.05.007
[43] Manon, Christopher, Compactifications of character varieties and skein relations on conformal blocks, Geom. Dedicata, 179, 335-376 (2015) · Zbl 1339.14013
[44] Marian, Alina; Oprea, Dragos; Pandharipande, Rahul, The first Chern class of the Verlinde bundles. String-Math 2012, Proc. Sympos. Pure Math. 90, 87-111 (2015), Amer. Math. Soc., Providence, RI · Zbl 1356.14022 · doi:10.1090/pspum/090/01521
[45] Marian, Alina; Oprea, Dragos; Pandharipande, Rahul; Pixton, Aaron; Zvonkine, Dimitri, The Chern character of the Verlinde bundle over \(\overline{\mathcal{M}}_{g,n} \), J. Reine Angew. Math., 732, 147-163 (2017) · Zbl 1453.14138 · doi:10.1515/crelle-2015-0003
[46] Mumford, D.; Fogarty, J.; Kirwan, F., Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)] 34, xiv+292 pp. (1994), Springer-Verlag, Berlin · Zbl 0797.14004
[47] Nagaraj, D. S.; Seshadri, C. S., Degenerations of the moduli spaces of vector bundles on curves. I, Proc. Indian Acad. Sci. Math. Sci., 107, 2, 101-137 (1997) · Zbl 0922.14023 · doi:10.1007/BF02837721
[48] Nagaraj, D. S.; Seshadri, C. S., Degenerations of the moduli spaces of vector bundles on curves. {II}. {G}eneralized {G}ieseker moduli spaces, Proc. Indian Acad. Sci. Math. Sci., 109, 2, 165-201 (1999) · Zbl 0957.14021
[49] Narasimhan, M. S.; Ramadas, T. R., Factorisation of generalised theta functions. {I}, Invent. Math., 114, 3, 565-623 (1993) · Zbl 0815.14014
[50] Narasimhan, M. S.; Ramanan, S., Moduli of vector bundles on a compact {R}iemann surface, Ann. of Math. (2), 89, 14-51 (1969) · Zbl 0186.54902
[51] Narasimhan, M. S.; Seshadri, C. S., Stable and unitary vector bundles on a compact {R}iemann surface, Ann. of Math. (2), 82, 540-567 (1965) · Zbl 0171.04803
[52] Newstead, P. E., Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics 51, vi+183 pp. (1978), Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi · Zbl 0411.14003
[53] Oda, Tadao; Seshadri, C. S., Compactifications of the generalized Jacobian variety, Trans. Amer. Math. Soc., 253, 1-90 (1979) · Zbl 0418.14019 · doi:10.2307/1998186
[54] Osserman, Brian, Stability of vector bundles on curves and degenerations, Canad. Math. Bull., 59, 4, 858-864 (2016) · Zbl 1375.14115 · doi:10.4153/CMB-2016-008-2
[55] Pandharipande, Rahul, A compactification over \(\overline{M}_g\) of the universal moduli space of slope-semistable vector bundles, J. Amer. Math. Soc., 9, 2, 425-471 (1996) · Zbl 0886.14002 · doi:10.1090/S0894-0347-96-00173-7
[56] Reid, Miles, Flatness, a brief overview, http://homepages.warwick.ac.uk/ masda/surf/more/grad.pdf · Zbl 0708.14027
[57] Satake, Ichir\^o, On representations and compactifications of symmetric Riemannian spaces, Ann. of Math. (2), 71, 77-110 (1960) · Zbl 0094.34603 · doi:10.2307/1969880
[58] Schmitt, Alexander H. W., On the modular interpretation of the Nagaraj-Seshadri locus, J. Reine Angew. Math., 670, 145-172 (2012) · Zbl 1268.14036
[59] Serre, J.-P., Modules projectifs et espaces fibr\'{e}s \`“a fibre vectorielle. S\'”{e}minaire P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot, 1957/58, Fasc. 2, Expos\'{e} 23, 18 pp. (1958), Secr\'{e}tariat math\'{e}matique, Paris · Zbl 0132.41202
[60] Seshadri, C. S., Fibr\'{e}s vectoriels sur les courbes alg\'{e}briques, Ast\'{e}risque 96, 209 pp. (1982), Soci\'{e}t\'{e} Math\'{e}matique de France, Paris · Zbl 0517.14008
[61] Simpson, Carlos T., Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes \'{E}tudes Sci. Publ. Math., 79, 47-129 (1994) · Zbl 0891.14005
[62] Sun, Xiaotao, Degeneration of \({\operatorname{SL}}(n)\)-bundles on a reducible curve, Algebraic geometry in East Asia, World Sci. Publ., River Edge, NJ, 229-243 (2002), Kyoto · Zbl 1080.14529
[63] Sun, Xiaotao, Moduli spaces of \({\rm SL}(r)\)-bundles on singular irreducible curves, Asian J. Math., 7, 4, 609-625 (2003) · Zbl 1055.14039 · doi:10.4310/AJM.2003.v7.n4.a10
[64] Tauvel, Patrice; Yu, Rupert W. T., Lie algebras and algebraic groups, Springer Monographs in Mathematics, xvi+653 pp. (2005), Springer-Verlag, Berlin · Zbl 1068.17001
[65] Teleman, Constantin, Borel-Weil-Bott theory on the moduli stack of \(G\)-bundles over a curve, Invent. Math., 134, 1, 1-57 (1998) · Zbl 0980.14025 · doi:10.1007/s002220050257
[66] Tsuchiya, Akihiro; Ueno, Kenji; Yamada, Yasuhiko, Conformal field theory on universal family of stable curves with gauge symmetries. Integrable systems in quantum field theory and statistical mechanics, Adv. Stud. Pure Math. 19, 459-566 (1989), Academic Press, Boston, MA · Zbl 0696.17010
[67] Ueno, Kenji, Conformal field theory with gauge symmetry, Fields Institute Monographs 24, viii+168 pp. (2008), American Mathematical Society, Providence, RI; Fields Institute for Research in Mathematical Sciences, Toronto · Zbl 1188.81004 · doi:10.1090/fim/024
[68] Wang, Jonathan, The moduli stack of G-bundles
[69] Weyman, Jerzy, Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathematics 149, xiv+371 pp. (2003), Cambridge University Press, Cambridge, England · Zbl 1075.13007 · doi:10.1017/CBO9780511546556
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.