×

On the modular interpretation of the Nagaraj-Seshadri locus. (English) Zbl 1268.14036

The author constructs a moduli space \({\mathcal M}_0\) for torsion-free sheaves \(\mathcal A\) of rank \(r\) and degree 0 on a complex irreducible curve \(X\) with one node. Each sheaf \(\mathcal A\) is endowed with a homomorphism \({\mathfrak d}: \bigwedge^r {\mathcal A}\to {\mathcal O}_X\) which is an isomorphism away from the node. The curve \(X\) is considered as a degeneration \({\mathcal X}_0\) in a family \({\mathcal X}\to S\) of irreducible projective curves whose generic fibre is smooth curve \({\mathcal X}_{\eta}\) and whose base \(S\) is a spectrum of a discrete valuation ring. The corresponding moduli space \({\mathcal M}_0\) to be constructed is also a degeneration in the family \({\mathcal M}_S \to S\) of moduli spaces (of semistable torsion-free sheaves of rank \(r\) and degree 0 on \(\mathcal X\)) with same base and its generic fibre is moduli \({\mathcal M}_{S,\eta}\) of semistable vector bundles of rank \(r\) and degree 0 on the smooth curve \({\mathcal X}_{\eta}.\)
Let \({\mathcal N}_0\) be the set of all polystable torsion-free sheaves \({\mathcal E}\) of rank \(r\) and degree 0 for which there is an homomorphism \(\bigwedge^r {\mathcal E}/\mathrm{Torsion} \to {\mathcal O}_{{\mathcal X}_0}\) which is an isomorphism away from the node. The problem is to give a modular interpretation to this subset. In particular, this will give it a scheme structure.
The author interprets the theory of vector bundles of rank \(r\) as a theory of principal \(\mathrm{GL}_r(\mathbb C)\)-bundles. There is a closed subvariety \({\mathcal N} \subset {\mathcal M}_{S,\eta}\) which is isomorphic to moduli space of semistable principal \(\mathrm{SL}_r(\mathbb C)\)-bundles. Let \({\mathcal N}_S\) be the closure of \({\mathcal N}\) in \({\mathcal M}_S\), so that \({\mathcal N}_{S,\eta}={\mathcal N}\). He constructs a (relative) moduli space \(\widehat {\mathcal N}_S \to S\) together with a surjective \(S\)-morphism \(\widehat N_S \to \mathcal N_S\) isomorphic on the generic fibre and such that \(\widehat {\mathcal N}_{S,0}\) parametrizes trosion-free sheaves \(\mathcal A\) with a homomorphism \(\mathfrak d\) as required.
A part of the theory is developed for any semisimple linear algebraic group \(G\) instead of \(\mathrm{SL}_r(\mathbb C).\)

MSC:

14H60 Vector bundles on curves and their moduli
14D20 Algebraic moduli problems, moduli of vector bundles
Full Text: DOI

References:

[1] DOI: 10.1142/S0129167X09005558 · Zbl 1177.14069 · doi:10.1142/S0129167X09005558
[2] DOI: 10.1007/BF02384869 · Zbl 0773.14006 · doi:10.1007/BF02384869
[3] DOI: 10.1155/S1073792804133114 · Zbl 1106.14027 · doi:10.1155/S1073792804133114
[4] DOI: 10.1007/BF02829806 · Zbl 1096.14027 · doi:10.1007/BF02829806
[5] DOI: 10.1112/S0024610706022836 · Zbl 1101.14048 · doi:10.1112/S0024610706022836
[6] Gieseker D., J. Di{\currency}. Geom. 19 pp 173– (2004)
[7] DOI: 10.1016/j.aim.2008.05.015 · Zbl 1163.14008 · doi:10.1016/j.aim.2008.05.015
[8] Nagaraj D. S., Proc. Indian Acad. Sci. Math. Sci. 107 pp 101– (1997)
[9] DOI: 10.1007/BF01343949 · Zbl 0284.32019 · doi:10.1007/BF01343949
[10] DOI: 10.1155/S1073792802107069 · Zbl 1034.14017 · doi:10.1155/S1073792802107069
[11] DOI: 10.1155/S1073792804132984 · Zbl 1093.14507 · doi:10.1155/S1073792804132984
[12] A. H., J. Di{\currency}. Geom. 66 pp 169– (2004)
[13] A. H., Math. Sci. 115 pp 15– (2005)
[14] DOI: 10.1155/IMRN.2005.1427 · Zbl 1084.14034 · doi:10.1155/IMRN.2005.1427
[15] Sun X., J. Alg. Geom. 9 pp 459– (2000)
[16] Sun X., Asian J. Math. 7 pp 609– (2003) · Zbl 1055.14039 · doi:10.4310/AJM.2003.v7.n4.a10
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.