×

Equilibrium logic. (English) Zbl 1117.03039

The aim of the paper is to present an overview of equilibrium logic and summarize its main features, properties and areas of application.
Equilibrium logic generalizes reasoning with stable models and answer sets, it relates closely to other applied logics such as default logic, autoepistemic logic or modal nonmonotonic systems.
The author focuses mainly on those aspects that relate to logic programming and deductive databases, rather than more general knowledge formalisms.
Reviewer: Nail Zamov (Kazan)

MSC:

03B70 Logic in computer science
03B55 Intermediate logics
68N17 Logic programming
68T27 Logic in artificial intelligence

Software:

ASSAT; Cmodels
Full Text: DOI

References:

[1] Anger, C., Linke, M.T., Neumann, A., Schaube, T.: The nomore++ System. In: Baral, C., et al. (eds.) Proc. LPNMR 2005, LNAI, pp. 422–426. Springer, Berlin Heidelberg New York (2005)
[2] Avellone, A., Ferrari, M., Miglioli, P.: Duplication-free tableau calculi and related cut-free sequent calculi for the interpolable propositional intermediate logics. Log. J. IGPL 7(4), 447–480 (1999) · Zbl 0938.03042 · doi:10.1093/jigpal/7.4.447
[3] Balduccini, M., Gelfond, M., Noguiera, M.: A-Prolog as a tool for declarative programming. In: Proc. 12th Int. Conf. on Software Engineering and Knowledge Engineering, SEKE 2000, Chicago, IL (2000)
[4] Balduccini, M., Gelfond, M., Noguiera, M.: The USA-Advisor: a case study in answer set planning. Logic Programming and Nonmonotonic Reasoning, LPNMR 2001, LNAI 2173, Springer, Berlin Heidelberg New York (2001)
[5] Baral, C.: Knowlewdge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, UK (2003) · Zbl 1056.68139
[6] Baral, C., Gelfond, M.: Reasoning about intended actions. In: Proceedings of the Twentieh National Conference on Artificial Intelligence. AAAI, Menlo Park, California · Zbl 0882.68027
[7] Bonner, A., McCarty, L.T.: Adding negation-as-failure to intuitionistic logic programming. In: Proc NorthAmerican Conference on Logic Programming, pp. 681–703 MIT, Cambridge, Massachusetts (1990)
[8] Cabalar, P., Odintsov, S., Pearce, D.: A logic for reasoning about well-founded semantics: preliminary report. In: Marín, R. et al (eds.) CAEPIA: Actas, Volumen 1: 183–192 Santiago de Compostela, Spain (2005)
[9] Cabalar, P., Odintsov, S., Pearce, D.: Logical foundations of well-founded semantics. In: Proc. KR ’06, Lake District, UK (2006) · Zbl 1131.68369
[10] Cabalar, P., Odintsov, S., Pearce, D.: Strong negation in well-founded and partial stable semantics for logic programs. In: Proc. Iberamia 06, LNAI, Springer, Berlin Heidelberg New York (2006) · Zbl 1131.68369
[11] Cabalar, P., Odintsov, S., Pearce, D., Valverde, A.: On the Logic and Computation of Partial Equilibrium Models. Proc. Jelia 06, LNAI, Springer, Berlin Heidelberg New York (2006) · Zbl 1152.68599
[12] Cabalar, P., Odintsov, S., Pearce, D., Valverde, A.: Analysing and extending well-founded and partial stable semantics using partial equilibrium logic. Proc. ICLP 06, LNAI, Springer, Berlin Heidelberg New York (2006) · Zbl 1131.68369
[13] Cabalar, P., Pearce, D., Valverde, A.: Reducing propositional theories in equilibrium logic to logic programs. In: Bento, C. et al (eds.) Proceedings EPIA, LNAI 3808, pp. 4–17, Springer, Berlin Heidelberg New York (2005)
[14] Calimeri, F., Galizia, S., Rullo F., Calimeri, S., Galizia, M., Ruffolo, P.: Enhancing disjunctive logic programming for ontology specification. Proceedings AGP 2003 (2003)
[15] van Dalen, D.: Intuitionistic logic. In: Handbook of Philosophical Logic, Volume III: Alternatives to Classical logic, D. Reidel, Dordrecht (1986) · Zbl 0875.03038
[16] van Dantzig, D.: On the principles of intuitionistic and affirmative mathematics. Indag. Math. 9, 429–440; 506–517 (1947) · Zbl 0035.14901
[17] Dietrich, J.: Deductive bases of nonmonotonic inference operations. NTZ Report, University of Leipzig, Germany (1994)
[18] Dietrich, J.: Inferenzframes. Doctoral dissertation, University of Leipzig (1995)
[19] Dix, J.: A classification-theory of semantics of normal logic programs. I. strong properties. Fundam. Inform. 22(3), 227–255 (1995) · Zbl 0829.68021
[20] Dix, J.: A classification-theory of semantics of normal logic programs. II. weak properties. Fundam. Inform. 22(3), 257–288 (1995) · Zbl 0829.68022
[21] Došen, K.: Negation as a modal operator. Rep. Math. Log. 20, 15–27 (1986) · Zbl 0626.03006
[22] Dummett, M.: Elements of Intuitionism. Clarendon, Oxford (1977) · Zbl 0358.02032
[23] Dung, P.M.: Declarative semantics of hypothetical logic programing with negation as failure. In: Proceedings ELP 92, 99. 45–58 (1992)
[24] Eiter, T., Fink, M.: Uniform equivalence of logic programs under the stable model semantics. In: Int Conf. in Logic Programming, ICLP’03, Mumbay, India. Springer, Berlin Heidelberg New York (2003) · Zbl 1204.68052
[25] Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and strong equivalence. In: Lifschitz, V., Niemela, I. (eds.) Proceedings LPNMR 2004, LNAI 2923, Springer, Berlin Heidelberg New York (2004) · Zbl 1122.68369
[26] Eiter, T., Fink, M., Tompits, H., Woltran, S.: Strong and uniform equivalence in answer set programming. Proceedings AAAI 2005, Pittsburg, Pennsylvannia 2005 · Zbl 1122.68369
[27] Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer-set programming. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05), pp. 97–102. Professional Book Center, Colorado (2005)
[28] Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: propositional case. Ann. Math. Artif. Intell. 15(3–4), 289–323 (1995) · Zbl 0858.68016 · doi:10.1007/BF01536399
[29] Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) Logics In Artificial Intelligence. Proceedings JELIA’04, LNAI 3229, pp. 200–212. Springer, Berlin Heidelberg New York (2004) · Zbl 1111.68380
[30] Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theor. Pract. Log. Prog. 5, 45–74 (2005) · Zbl 1093.68017 · doi:10.1017/S1471068403001923
[31] Ferraris, P.: Answer sets for propositional theories. In: Baral, C. et al (eds.) Proceedings on Logic Programming and Nonmonotonic Reasoning 05, LNAI 3662, Springer, Berlin Heidelberg New York (2005) · Zbl 1152.68408
[32] Gelfond, M.: Logic programming and reasoning with incomplete information. Ann. Math. Artif. Intell. 12, 98–116 (1994) · Zbl 0858.68013 · doi:10.1007/BF01530762
[33] Gelfond, M., Lifschitz, V.: The stable model semantics for logic programs. In: Bowen, K., Kowalski, R. (eds.) Proc 5th Int Conf on Logic Programming 2, pp. 1070–1080. MIT, Cambridge, Massachusetts (1988)
[34] Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Warren, D., Szeredi, P. (eds.) Proc ICLP-90, pp. 579–597. MIT, Cambridge, Massachusetts (1990)
[35] Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput., 365–387 (1991) · Zbl 0735.68012
[36] Giordano, L., Olivetti, N.: Combining negation-as-failure and embedded implications in logic programs. J. Log. Program. 36, 91–147 (1998) · Zbl 0911.68027 · doi:10.1016/S0743-1066(97)10014-0
[37] Gödel, K.: Zum intuitionistischen aussagenkalkül. Anzeiger der Akademie der Wissenschaften Wien, mathematisch, naturwissenschaftliche Klasse. 69, 65–66 (1932)
[38] Greco, S., Leone, N., Scarcello.: Datalog with nested rules. In: Dix, J., et al (eds.) Proceedings on Logic Programming and Knowledge Representation 1997, Port Jefferson, New York, LNCS 1471, pp. 52–65. Springer, Berlin Heidelberg New York (1998)
[39] Gurevich, Y.: Intuitionistic logic with strong negation. Stud. Log. 36(1–2), 49–59 (1977) · Zbl 0366.02015 · doi:10.1007/BF02121114
[40] Hähnle, R.: Towards an efficient tableau proof procedure for multiple-valued logics. In: Börger, Egon, Kleine Büning, Hans, Richter, Michael M., Schönfeld, Wolfgang (eds.) Selected papers from Computer Science Logic, CSL’90, Heidelberg, Germany. Lect. Notes Comput. Sci., 533, 248–260. Springer, Berlin Heidelberg New York (1991)
[41] Hähnle, R.: Automated Deduction in Multiple-valued Logics. Oxford University Press, London, UK (1993) · Zbl 0798.03010
[42] Heyting, A.: Die formalen regeln der intuitionistischen logik. Sitz.ber. Preuss. Akad. Wiss., Phys. Math. Kl., 42–56 (1930) · JFM 56.0823.01
[43] Hosoi, T.: The axiomatization of the intermediate propositional systems S n of Gödel. J. Coll. Sci., Imp. Univ. Tokyo 13, 183–187 (1966) · Zbl 0156.00802
[44] Inoue, K., Sakama, C.: Equivalence in abductive logic. In: Proceedings IJCAI 2005. Edinburg, Scotland (2005) · Zbl 1134.68480
[45] De Jongh, D., Hendricks, L.: Characterization of strongly equivalent logic programs in intermediate logics. Theor. Pract. Log. Prog. 3(3), 259–270 (2003) · Zbl 1069.68538 · doi:10.1017/S147106840200159X
[46] Janhunen, T., Niemelä, I., Simons, P., You, J.-H.: Unfolding partiality and disjunctions in stable model semantics. ACM Trans. Comput. Log. (TOCL) 7(1), 1–37 (2006) · doi:10.1145/1119439.1119440
[47] Kleine-B§ning, H., Karpinski,M., FlŽgel, A.: Resolution for Quantified Boolean Formulas. Inf. Comput. 117, 12–18 (1995) · Zbl 0828.68045 · doi:10.1006/inco.1995.1025
[48] Kracht, M.: On extensions of intermediate logics by strong negation. J. Philos. Logic 27(1), 49–73 (1998) · Zbl 0929.03035 · doi:10.1023/A:1004222213212
[49] Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44, 167–207 (1990) · Zbl 0782.03012 · doi:10.1016/0004-3702(90)90101-5
[50] Leone, N., et al.: Data integration: a challenging ASP application. In: Baral, C., et al (eds.) Proc. LPNMR 2005, Diamante, Italy. LNAI, pp. 379–383, Springer, Berlin Heidelberg New York (2005)
[51] Leone, N., Pfeifer, G.W., Faber, T., Eiter, G., Gottlob, Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. CoRR: cs.AI/0211004, September, 2003 · Zbl 1367.68308
[52] Lierler, Y. CMODELS – SAT-based disjunctive answer set solver. In: Baral, C., et al (eds.) Proc. LPNMR 2005, Diamante, Italy. LNAI, pp. 447–451 Springer, Berlin Heidelberg NewYork (2005)
[53] Lifschitz, V.: Foundations of logic programming. In: Brewka, G. (ed.) Principles of Knowledge Representation, pp. 69–128. CSLI, Stanford, California (1996) · Zbl 0962.68026
[54] Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Log. 2(4), 526–541 (2001) · Zbl 1365.68149 · doi:10.1145/383779.383783
[55] Lifschitz, V., Tang, L., Turner, H.: Nested expressions in logic programs. Ann. Math. Artif. Intell. 25(3-4), 369–389 (1999) · Zbl 0940.68075 · doi:10.1023/A:1018978005636
[56] Lin, F.: Reducing strong equivalence of logic programs to entailment in classical propositional logic. In: Proc. KR’02. pp. 170–176, Toulouse, France.
[57] Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Artif. Intell. 157(1–2), 115–137 (2004) · Zbl 1085.68544 · doi:10.1016/j.artint.2004.04.004
[58] Łukasiewicz, J.: Die Logik und das Grundlagenproblem. In: Les Entreties de Zürich sur les Fondaments et la Méthode des Sciences Mathématiques 12, 6–9 (1938), Zürich, 82–100 (1941)
[59] McCarty, L.T.: Clausal intuitionistic logic I. J. Log. Program. 5, 1–31 (1988) · Zbl 0645.03006 · doi:10.1016/0743-1066(88)90005-2
[60] Makinson, D.: General theory of cumulative inference. In: Reinfrank, M., et al (eds.) Nonmonotonic reasoning. LNAI 346, Springer, Berlin Heidelberg New York (1989) · Zbl 0675.03007
[61] Makinson, D.: General patterns in nonmonotonic reasoning. In: Gabbay, D., et al (eds.) Handbook of Logic in Artificial Intelligence. Clarendon, Oxford (1994)
[62] Maksimova, L.: Craig’s interpolation theorem and amalgamable varieties. Doklady Akademii Nauk SSSR, 237, no.6, 1281–1284 (1977) (Translated as Soviet Math. Doklady.) · Zbl 0393.03013
[63] Miller, D.: Logical analysis of modules in logic programming. J. Log. Program. 6, 79–108 (1989) · Zbl 0681.68022 · doi:10.1016/0743-1066(89)90031-9
[64] Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theor. Comp. Sci. 52(1-2), 145–153 (1987) · Zbl 0639.03042 · doi:10.1016/0304-3975(87)90083-1
[65] Nelson, D.: Constructible falsity. J. Symb. Log. 14, 16–26 (1949) · Zbl 0033.24304 · doi:10.2307/2268973
[66] Odintsov, S., Pearce, D.: A logic for reasoning about paraconsistent answer sets. Proc. LPNMR 2005, Diamante, Italy, LNAI, pp. 343–355. Springer, Berlin Heidelberg New York (2005) · Zbl 1152.68416
[67] Ojeda, M.P., de Guzmán, I., Aguilera, G., Valverde, A.: Reducing signed propositional formulas. Soft Comput. 2(4), 157–166 (1998)
[68] Ono, H.: Model extension theorem and Craig’s interpolation theorem for intermediate predicate logics. Rep. Math. Log. 15, 41–58 (1983) · Zbl 0519.03016
[69] Ortiz, M., Osorio, M.: Nelson’s strong negation, safe beliefs and the answer set semantics. In: De Vos, M., Provetti, A. (eds.) ASP 2005 Workshop Proceedings, Bath, UK (2005)
[70] Osorio, M., Navarro, J., Arrazola, J.: Equivalence in answer set programming. In: Proc. LOPSTR 2001, Paphos, Cyprus. LNCS 2372, pp. 57–75. Springer, Berlin Heidelberg New York (2001) · Zbl 1073.68586
[71] Osorio, M., Navarro Pérez, J.A., Arrazola, J.: Safe beliefs for propositional theories. Ann. Pure Appl. Logic. 134(1), 63–82 (2005) · Zbl 1074.03013 · doi:10.1016/j.apal.2004.06.012
[72] Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading, Massachusetts (1994) · Zbl 0833.68049
[73] Pearce, D.: Answer Sets and Nonmonotonic S4. In: Dyckoff, R. (ed.) Extensions of Logic Programming Proc 4th Int Workshop, LNAI798, Springer, Berlin Heidelberg New York (1994)
[74] Pearce, D.: Nonmonotonicity and Answer Set Inference. In: Proc. LPNMR 1995, LNAI 928, pp. 372–387, Springer, Berlin Heidelberg New York (1995)
[75] Pearce, D.: A new logical characterisation of stable models. In: Proceedings Non-Monotonic Extensions of Logic Programming, NMELP 96, Bad Honnef, Germany (1996)
[76] Pearce, D.: A new logical characterisation of stablemodels and answer sets. In: Non-Monotonic Extensions of Logic Programming, NMELP 96, Bad Honnef, Germany. LNCS 1216, pp. 57–70. Springer, Berlin Heidelberg New York (1997)
[77] Pearce, D.: From here to there: stable negation in logic programming. In: Gabbay, D., Wansing, H. (eds.) What is negation? Kluwer, Norwell (1999) · Zbl 0978.03027
[78] Pearce, D.: Stable inference as intuitionistic validity. J. Log. Program. 38, 79–91 (1999) · Zbl 0911.68136 · doi:10.1016/S0743-1066(98)10015-8
[79] Pearce, D.: Simplifying logic programs under answer set semantics. Demoen, B., Lifschtiz, V. (eds.) Proceedings of ICLP04, LNCS 3132, pp. 210–224. Springer, Berlin Heidelberg New York (2004) · Zbl 1104.68383
[80] Pearce, D., de Guzmán, I.P., Valverde, A.: A tableau calculus for equilibrium entailment. In: Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2000, LNAI 1847, pp. 352–367. Springer, Berlin Heidelberg New York (2000) · Zbl 0963.03045
[81] Pearce, D., de Guzmán, I.P., Valverde, A.: Computing equilibrium models using signed formulas. In: Lloyd, John W., et al (eds.) Computational Logic – CL 2000, First International Conference. Proceedings, LNAI 1861, pp. 688–702. Springer, Berlin Heidelberg New York (2000) · Zbl 0983.03023
[82] Pearce, D. Tompits, H., Woltran, S.: Encodings for equilibrium logic and logic programs with nested expressions. In: Proceedings EPIA ’01, LNAI , pp. 306–320. Springer, Berlin Heidelberg New York (2001) · Zbl 1053.68695
[83] Pearce, D., Sarsakov, V., Schaub, T., Tompits, H., Woltran, S.: A polynomial translation of logic programs with nested expressions into disjunctive logic programs: preliminary report. In: P. J. Stuckey (ed.) Logic Programming, 18th International Conference, ICLP 2002, Lect. Notes Comput. Sci. 2401, pp. 405–420. Springer, Berlin Heidelberg New York 200 · Zbl 1045.68519
[84] Pearce, D., Valverde, A.: Uniform equivalence for equilibrium logic and logic programs. Lifschitz, V., NiemelŁ, I. (eds.) Proceedings of LPNMR’04 , LNAI 2923, pp. 194–206. Springer, Berlin Heidelberg New York (2004) · Zbl 1122.68384
[85] Pearce, D., Valverde, A.: Synonymous theories in answer set programming and equilibrium logic. López de Mántaras, R., Saitta, L. (eds.) Proceedings ECAI 2004, Nieuwe Hemweg, Amsterdam. pp. 388–392. IOS Press, Nieuwe Hemweg, Amsterdam (2004)
[86] Pearce, D., Valverde, A.: A first-order nonmonotonic extension of constructive logic. Stud. Log. 80, 246–321 (2005) · Zbl 1097.03020 · doi:10.1007/s11225-005-8473-8
[87] Pereira, L.M., Alferes, J.J.: Well founded semantics for logic programs with explicit negation. In: Neumann, B. (ed.) European Conference on Artificial Intelligence, pp. 102–106. Wiley, New York (1992)
[88] Przymusinski, T.: Stable semantics for disjunctive programs. New. Gener. Comput. 9, 401–424 (1991) · Zbl 0796.68053 · doi:10.1007/BF03037171
[89] Sakama, C.: Inverse entailment in nonmonotonic logic programs. In: Proceedings of the 10th International Conference on Inductive Logic Programming (ILP-2000), LNAI 1866, pp. 209–224, Springer, Berlin Heidelberg New York (2000) · Zbl 0994.68112
[90] Sakama, C., Inoue, K.: Paraconsistent stable semantics for extended disjunctive programs. J. Log. Comput. 5, 265–285 (1995) · Zbl 0827.68070 · doi:10.1093/logcom/5.3.265
[91] Sakama, C., Inoue, K.: Inductive equivalence of logic programs Proceedings ILP 05 Springer, Berlin Heidelberg New York (2005) · Zbl 1134.68480
[92] Sarsakov, V., Schaub, T., Tompits, H.,Woltran, S.: nlp: A Compiler for Nested Logic Programming. In: Proceedings of LPNMR 2004, LNAI 2923, pp. 361–364. Springer, Berlin Heidelberg New York (2004) · Zbl 1122.68390
[93] Seipel, D.: Using clausal deductive databases for defining semantics in disjunctive deductive databases. Ann. Math. Artif. Intell. 33, 347–378 (2001) · Zbl 1314.68121 · doi:10.1023/A:1013180132511
[94] Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artif. Intell. 138(1–2), 181–234 (2002) · Zbl 0995.68021 · doi:10.1016/S0004-3702(02)00187-X
[95] Truszczyński, M.: Strong and uniform equivalence of nonmonotonic theories: an algebraic approach. In: Proceedings KR 2006, AAAI, Menlo Park, California (2006) · Zbl 1118.68161
[96] Turner, H.: Strong equivalence for logic programs and default theories (made easy). In: Proc. of the Logic Programming and Nonmonotonic Reasoning, LPNMR’01, LNAI 2173, pp. 81–92. Springer, Berlin Heidelberg New York (2001) · Zbl 1007.68025
[97] Turner, H.: Strong equivalence made easy: nested expressions and weight constraints. Theor. Prac. Log. Prog. 3, 609–622 (2003) · Zbl 1079.68017 · doi:10.1017/S1471068403001819
[98] Turner, H.: Strong equivalence for causal theories. In: Lifschitz, V., Niemelä, I. (eds.) Proc. of the Logic Programming and Nonmonotonic Reasoning, LPNMR’04, LNAI 2923 pp. 289–301. Springer, Berlin Heidelberg New York (2004) · Zbl 1122.68629
[99] Vakarelov, D.: Notes on N-lattices and constructive logic with strong nxegation. Stud. Log. 36(1–2), 109–125 (1977) · Zbl 0385.03055 · doi:10.1007/BF02121118
[100] Valverde, A.: tabeql: A tableau based suite for equilibrium logic. Alferes, J.J., Leite, J. (eds.) Logics in Artificial Intelligence, Proc. JELIA 2004, LNAI 3229, pp. 734–737, Springer, Berlin Heidelberg New York (2004) · Zbl 1111.68692
[101] Vorob’ev, N.N.: A constructive propositional calculus with strong negation (in Russian). Dokl. Akad. Nauk SSSR 85, 465–468 (1952)
[102] Vorob’ev, N.N.: The problem of deducibility in constructive propositional calculus with strong negation (in Russian). Dokl. Akad. Nauk SSSR 85, 689–692 (1952)
[103] Wang, K., Zang.: Nested epistemic logic programs. In: Baral, C., et al (eds.), Proc. LPNMR 2005, LNAI 3229, pp. 279–290, Springer, Berlin Heidelberg New York (2005) · Zbl 1152.68418
[104] Woltran, S.: Quantified boolean formulas – from theory to practice. Dissertation, Technische Universität Wien, Institut für Informationssysteme (2003)
[105] Woltran, S.: Characterizations for relativized notions of equivalence in answer set programming. In: Alferes, J.J., Leite, J. (eds.) Logics in Artificial Intelligence, Proc. JELIA 2004, LNAI 3229, Springer, Berlin Heidelberg New York (2004) · Zbl 1111.68695
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.