×

Quantum ergodicity and localization of plasmon resonances. (English) Zbl 1534.82029

Summary: We are concerned with the geometric properties of the surface plasmon resonance (SPR). SPR is a non-radiative electromagnetic surface wave that propagates in a direction parallel to the negative permittivity/dielectric material interface. It is known that the SPR oscillation is very sensitive to the material interface. However, we show that the SPR oscillation asymptotically localizes at places with high magnitude of curvature in a certain sense under an assumption equivalent to convexity in the three-dimensional setting. Our work leverages the Heisenberg picture of quantization and quantum ergodicity first derived by Shnirelman, Zelditch, Colin de Verdière and Helffer-Martinez-Robert, as well as certain novel and more general ergodic properties of the Neumann-Poincaré operator to analyze the SPR field, which are of independent interest to the spectral theory and the potential theory.

MSC:

82D80 Statistical mechanics of nanostructures and nanoparticles
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
58J51 Relations between spectral theory and ergodic theory, e.g., quantum unique ergodicity
35Q60 PDEs in connection with optics and electromagnetic theory
35P20 Asymptotic distributions of eigenvalues in context of PDEs

References:

[1] Ammari, H.; Ciraolo, G.; Kang, H.; Lee, H.; Milton, G., Spectral analysis of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. Anal., 208, 667-692 (2013) · Zbl 1282.78004
[2] Ammari, H.; Ciraolo, G.; Kang, H.; Lee, H.; Milton, G. W., Anomalous localized resonance using a folded geometry in three dimensions, Proc. R. Soc. A, 469, Article 20130048 pp. (2013) · Zbl 1348.78006
[3] Ammari, H.; Chow, Y. T.; Liu, H., Localized sensitivity analysis at high-curvature boundary points of reconstructing inclusions in transmission problems, SIAM J. Math. Anal., 54, 2, 1543-1592 (2022) · Zbl 1485.35419
[4] Ammari, H.; Kang, H., Polarization and Moment Tensors: With Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, vol. 162 (2007), Springer-Verlag: Springer-Verlag New York · Zbl 1220.35001
[5] Ammari, H.; Millien, P.; Ruiz, M.; Zhang, H., Mathematical analysis of plasmonic nanoparticles: the scalar case, Arch. Ration. Mech. Anal., 224, 597-658 (2017) · Zbl 1375.35515
[6] Ando, K.; Ji, Y.-G.; Kang, H.; Hyeonbae, H.; Kawagoe, D.; Miyanishi, Y., Spectral structure of the Neumann-Poincaré operator on tori, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 36, 1817-1828 (2019) · Zbl 07129764
[7] Ando, K.; Kang, H., Analysis of plasmon resonance on smooth domains using spectral properties of the Neumann-Poincaré operator, J. Math. Anal. Appl., 435, 162-178 (2016) · Zbl 1327.81193
[8] Ando, K.; Kang, H.; Liu, H., Plasmon resonance with finite frequencies: a validation of the quasi-static approximation for diametrically small inclusions, SIAM J. Appl. Math., 76, 731-749 (2016) · Zbl 1351.35205
[9] Avakumovi, V. G., Uber die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten, Math. Z., 65, 327-344 (1956) · Zbl 0070.32601
[10] Bergman, D. J.; Stockman, M. I., Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems, Phys. Rev. Lett., 90, Article 027402 pp. (2003)
[11] Birkhoff, G. D., Proof of the ergodic theorem, Proc. USA Acad., 17, 656-660 (1931) · JFM 57.1011.02
[12] Blåsten, E.; Li, H.; Liu, H.; Wang, Y., Localization and geometrization in plasmon resonances and geometric structures of Neumann-Poincaré eigenfunctions, ESAIM: Math. Model. Numer. Anal., 54, 3, 957-976 (2020) · Zbl 1437.35647
[13] Bonnetier, E.; Zhang, H., Characterization of the essential spectrum of the Neumann-Poincaré operator in 2D domains with corner via Weyl sequences, Rev. Mat. Iberoam., 35, 925-948 (2019) · Zbl 1423.35268
[14] Carleman, T., Proprietes asymptotiques des fonctions fondamentales des membranes vibrantes, C. R. Math. Scand. Stockholm, 14-18 (1934) · JFM 61.0526.04
[15] Carleman, T., Uber die asymptotische verteilung der eigenwerte partielle differentialgleichungen, Berichten der mathematisch-physisch Klasse der Sachsischen Akad. der Wissenschaften zu Leipzig, LXXXVIII Band. Berichten der mathematisch-physisch Klasse der Sachsischen Akad. der Wissenschaften zu Leipzig, LXXXVIII Band, Sitsung, 15 (1936) · JFM 62.0543.02
[16] Colin de Verdière, Y., Ergodicité et functions propres du Laplacien, Commun. Math. Phys., 102, 497-502 (1985) · Zbl 0592.58050
[17] Conway, J. B., A Course in Functional Analysis, Graduate Texts in Mathematics, vol. 96 (1990), Springer · Zbl 0706.46003
[18] Deng, Y.; Liu, H.; Zheng, G., Mathematical analysis of plasmon resonances for curved nanorods, J. Math. Pures Appl. (9), 153, 248-280 (2021) · Zbl 1479.35840
[19] Ding, M.; Liu, H.; Zheng, G., Shape reconstructions by using plasmon resonances with enhanced sensitivity, J. Comput. Phys., 486, Article 112131 pp. (2023) · Zbl 07788136
[20] Ding, M.; Liu, H.; Zheng, G., Shape reconstructions by using plasmon resonances, ESAIM: Math. Model. Numer. Anal., 56, 705-726 (2022) · Zbl 1486.65230
[21] Duistermaat, J. J.; Guillemin, V. W., The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 29, 39-79 (1975) · Zbl 0307.35071
[22] Egorov, J. V., The canonical transformations of pseudodifferential operators, Usp. Mat. Nauk, 24, 235-236 (1969), (in Russian) · Zbl 0191.43802
[23] Fredkin, D. R.; Mayergoyz, I. D., Resonant behavior of dielectric objects (electrostatic resonances), Phys. Rev. Lett., 91, Article 253902 pp. (2003)
[24] Gerard, P.; Leichtnam, E., Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., 71, 559-607 (1993) · Zbl 0788.35103
[25] Grafakos, L.; Torres, R. H., Pseudodifferential operators with homogeneous symbols, Mich. Math. J., 46, 261-269 (1999) · Zbl 0966.35144
[26] Grieser, D., The plasmonic eigenvalue problem, Rev. Math. Phys., 26, Article 1450005 pp. (2014) · Zbl 1294.78004
[27] Helffer, B.; Martinez, A.; Robert, D., Ergodicite et limite semi-classique, Commun. Math. Phys., 109, 313-326 (1987) · Zbl 0624.58039
[28] Hörmander, L., The Analysis of Linear Partial Differential Operators. I: Distribution Theory and Fourier Analysis, Grundlehren der Mathematischen Wissenschaften, vol. 256 (1983), Springer Verlag: Springer Verlag Berlin · Zbl 0521.35001
[29] Hörmander, L., The Analysis of Linear Partial Differential Operators. I: Differential Operators with Constant Coefficients, Grundlehren der Mathematischen Wissenschaften, vol. 257 (1983), Springer Verlag: Springer Verlag Berlin · Zbl 0521.35002
[30] Hörmander, L., The spectral function of an elliptic operator, Acta Math., 121, 193-218 (1968) · Zbl 0164.13201
[31] Kang, H.; Lim, M.; Yu, S., Spectral resolution of the Neumann-Poincaré operator on intersecting disks and analysis of plasmon resonance, Arch. Ration. Mech. Anal., 226, 83-115 (2017) · Zbl 1386.35285
[32] Ando, Kazunori; Kang, H.; Miyanishi, Y.; Nakazawa, T., Surface localization of plasmons in three dimensions and convexity, SIAM J. Appl. Math., 81, 1020-1033 (2021) · Zbl 1466.45010
[33] Kang, H.; Seo, J. K., Inverse conductivity problem with one measurement: uniqueness of balls in \(\mathbb{R}^3\), SIAM J. Appl. Math., 59, 851-867 (1999)
[34] Kellogg, O. D., Foundations of Potential Theory, Die Grundlehren der Mathematischen Wissenschaften, Band 31 (1967), Springer-Verlag: Springer-Verlag Berlin-New York, Reprint from the first edition of 1929 · Zbl 0152.31301
[35] Khavinson, D.; Putinar, M.; Shapiro, H. S., Poincaré’s variational problem in potential theory, Arch. Ration. Mech. Anal., 185, 143-184 (2007) · Zbl 1119.31001
[36] Klimov, V. V., Nanoplasmonics (2014), CRC Press
[37] Levitan, B. M., On the asymptotic behavior of the spectral function of a self-adjoint differential equation of the second order, Izv. Akad. Nauk SSSR, Ser. Mat., 16, 325-352 (1952) · Zbl 0048.32403
[38] Li, H.; Liu, H., On anomalous localized resonance and plasmonic cloaking beyond the quasi-static limit, Proc. R. Soc. A, 474, Article 20180165 pp. (2018) · Zbl 1407.35228
[39] Li, H.; Li, J.; Liu, H., On quasi-static cloaking due to anomalous localized resonance in \(\mathbb{R}^3\), SIAM J. Appl. Math., 75, 1245-1260 (2015) · Zbl 1322.35176
[40] Luk’yanchuk, B.; Zheludev, N. I.; Maier, S. A.; Halas, N. J.; Nordlander, P.; Giessen, H.; Chong, C. T., The Fano resonance in plasmonic nanostructures and metamaterials, Nat. Mater., 9, 707 (2010)
[41] Mayergoyz, I. D.; Fredkin, D. R.; Zhang, Z., Electrostatic (plasmon) resonances in nanoparticles, Phys. Rev. B, 72, Article 155412 pp. (2005)
[42] Milton, G. W.; Nicorovici, N.-A. P., On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. A, 462, 3027-3059 (2006) · Zbl 1149.00310
[43] Minakshisundaram, S.; Pleijel, A., Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds, Can. J. Math., 1, 242-256 (1949) · Zbl 0041.42701
[44] Miyanishi, Y., Weyl’s law for the eigenvalues of the Neumann-Poincaré operators in three dimensions: Willmore energy and surface geometry, preprint · Zbl 07567808
[45] Miyanishi, Y.; Rozenblum, G., Eigenvalues of the Neumann-Poincaré operators in dimension 3: Weyl’s law and geometry, St. Petersburg Math. J., 31, 371-386 (2020) · Zbl 1513.47041
[46] von Neumann, J., Proof of the quasi-ergodic hypothesis, Proc. USA Acad., 18, 70-82 (1932) · JFM 58.1271.03
[47] Osborn, J. E., Spectral approximation for compact operators, Math. Comput., 29, 712-725 (1975) · Zbl 0315.35068
[48] Ouyang, F.; Isaacson, M., Surface plasmon excitation of objects with arbitrary shape and dielectric constant, Philos. Mag., 60, 481-492 (1989)
[49] Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L., Plasmonics for extreme light concentration and manipulation, Nat. Mater., 9, 193-204 (2010)
[50] Shnirelman, A. I., Ergodic properties of eigenfunctions, Usp. Mat. Nauk, 29, 181-182 (1974) · Zbl 0324.58020
[51] Shnirelman, A. I., On the asymptotic properties of eigenfunctions in the region of chaotic motion, (KAM Theory and Semiclassical Approximations to Eigenfunctions (1993), Springer), addendum to V.F. Lazutkin
[52] Smith, D. R.; Pendry, J. B.; Wiltshire, M. C.K., Metamaterials and negative refractive index, Science, 305, 788-792 (2004)
[53] Sunada, T., Quantum ergodicity, (Progress in Inverse Spectral Geometry. Progress in Inverse Spectral Geometry, Trends Math. (1997), Birkhäuser: Birkhäuser Basel), 175-196 · Zbl 0891.58015
[54] Sunada, T., Trace formula and heat equation asymptotics for a nonpositively curved manifold, Am. J. Math., 104, 795-812 (1982) · Zbl 0516.58044
[55] Tate, T., Quantum ergodicity at a finite energy level, J. Math. Soc. Jpn., 51, 4, 867-885 (1999) · Zbl 0948.37052
[56] G. Uhlmann, The Dirichlet to Neumann map and inverse problems, preprint. · Zbl 1060.35166
[57] Walters, P., An Introduction to Ergodic Theory, Graduate Texts in Mathematics, vol. 79 (1982), Springer-Verlag: Springer-Verlag New York · Zbl 0475.28009
[58] Weyl, H., Uber die asymptotische verteilung der eigenwerte, Nachr. Ges. Wiss. Gött., Math.-Phys. Kl., 110-117 (1911) · JFM 43.0435.04
[59] S. Zelditch, Eigenfunctions of the Laplacian of Riemannian Manifolds, book in preprint, 2017.
[60] Zelditch, S., Quantum transition amplitudes for classically ergodic or completely integrable systems, J. Funct. Anal., 94, 415-436 (1990) · Zbl 0721.58051
[61] Zelditch, S., Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., 55, 919-941 (1987) · Zbl 0643.58029
[62] Zeng, S.; Baillargeat, D.; Ho, H. P.; Yong, K. T., Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications, Chem. Soc. Rev., 43, 3426-3452 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.