×

On asymptotic theory of plane separated flows. (English) Zbl 1502.35128

Summary: A review of investigations of plane steady external flows of incompressible fluid with developed separation zones at high Reynolds numbers is presented.

MSC:

35Q35 PDEs in connection with fluid mechanics
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] Helmholtz H (1868) Über discontinuirliche Flüssigkeits-Bewegungen. Monatsbericht Akad Wiss Berlin April: 215-228 · JFM 01.0341.03
[2] Kirchhoff, G., Zur Theorie freier Flüssigkeitsstrahlen, J Reine Angew Math, 70, 4, 289-298 (1869) · JFM 02.0730.02
[3] Kirchhoff G (1876) Vorlesungen über mathematische Physik: Mechanik, 21Vor. Teubner, Leipzig · JFM 08.0542.01
[4] Lord Reyleigh (1876) On the resistance of fluids. Philos Mag Ser 5 2:1150-1160
[5] Joukowsky, NE, A modification of Kirchhoff’s method of determining a two-dimensional motion of a fluid given a constant velocity along an unknown streamline, Mat Sb, 15, 1, 121-276 (1890)
[6] Michell, JH, On the theory of free stream lines, Philos Trans R Soc Lond A, 181, 389-431 (1890) · JFM 22.0947.01 · doi:10.1098/rsta.1890.0006
[7] Planck, M., Zur Theorie der Flüssigkeitsstrahlen, Ann Phys Chem NF, 21, 3, 499-509 (1884) · JFM 16.0829.02 · doi:10.1002/andp.18842570311
[8] Levi-Civita, T., Scie e leggi di resistenza, Rend Circ Matem Palermo, 23, 1-37 (1907) · JFM 38.0753.04 · doi:10.1007/BF03013504
[9] Prandtl, L., Proceedings of 3rd international congress in applied mechanics, Stockholm 1930, 41-42 (1931), Stockholm: Ab Sveriges Litogr Tryckerier, Stockholm
[10] Squire, HB, On the laminar flow of a viscous fluid with vanishing viscosity, Philos Mag Ser 7, 17, 1150-1160 (1934) · JFM 60.1384.05 · doi:10.1080/14786443409462468
[11] Imai, I., Discontinuous potential flow as the limiting form of the viscous flow for vanishing viscosity, J Phys Soc Jpn, 8, 3, 399-402 (1953) · doi:10.1143/JPSJ.8.399
[12] Ackerberg, RC, Boundary-layer separation at a free streamline, Part 1. Two-dimensional flow, J Fluid Mech, 44, 2, 211-225 (1970) · Zbl 0216.52503 · doi:10.1017/S0022112070001799
[13] Brillouin M (1911) Les surfaces de glissement d’Helmholtz et la résistance des fluides. Ann Chim Phys 8ser 23:145-230 · JFM 42.0793.02
[14] Villat H (1914) Sur la validité des solutions de certains problèmes d’Hydrodynamique. J Math Pures Appl 6ser 10(3):231-290 · JFM 45.1064.01
[15] Wu, TY; Holt, M., Inviscid cavity and wake flows, Basic developments in fluid dynamics, 1-116 (1968), New York: Academic Press, New York
[16] Brodetsky, S., Discontinuous fluid motion past circular and elliptic cylinders, Proc R Soc Lond A, 102, 542-553 (1923) · JFM 49.0746.03 · doi:10.1098/rspa.1923.0014
[17] Sychev VicV (2010) To the theory of Kirchhoff-type potential flow around a body. TsAGI Sci J 41(5):531-533
[18] Scheichl, B., A note on the far-asymptotics of Helmholtz-Kirchhoff flows, Theor Compat Fluid Dyn, 28, 3, 377-384 (2014) · doi:10.1007/s00162-014-0322-9
[19] Cisotti, U., Idromeccanica piana. Parte seconda (1922), Milano: Libreria Editrice Politecnica, Milano
[20] Birkhoff, G.; Zarantonello, EH, Jets, wakes, and cavities (1957), New York: Academic Press, New York · Zbl 0077.18703
[21] Gurevich, MI, The theory of jets in an ideal fluid (1979), Moscow: Nauka, Moscow
[22] Wu, TY, Cavity and wake flows, Ann Rev Fluid Mech, 4, 243-284 (1972) · doi:10.1146/annurev.fl.04.010172.001331
[23] Prandtl L (1905) Über Flüssigkeitsbewegung bei sehz kleiner Reibung. Verh III Intern Math-Kongr, Heidelberg, 1904. Teubner, Leipzig, S 484-491 · JFM 36.0800.02
[24] Howarth, L., On the solution of the laminar boundary layer equations, Proc R Soc Lond A, 164, 547-579 (1938) · JFM 64.1452.01
[25] Hartree DR (1939) A solution of the laminar boundar-layer equation for retarded flow. Aero Res Coun Rep Memo 2426 (issued 1949)
[26] Goldstein, S., On laminar boundary-layer flow near a position of separation, Q J Mech Appl Math, 1, 1, 43-69 (1948) · Zbl 0033.31701 · doi:10.1093/qjmam/1.1.43
[27] Stewartson, K., Is the singularity at separation removable?, J Fluid Mech, 44, 2, 347-364 (1970) · Zbl 0219.76033 · doi:10.1017/S0022112070001866
[28] Terrill, RM, Laminar boundary-layer flow near separation with and without suction, Philos Trans R Soc Lond A, 253, 55-100 (1960) · Zbl 0098.17303 · doi:10.1098/rsta.1960.0018
[29] Rosenhead, L., Laminar boundary layers (1963), Oxford: Clarendon Press, Oxford · Zbl 0115.20705
[30] Van Dyke, M., Perturbation methods in fluid mechanics (1975), Stanford: Prabolic Press, Stanford · Zbl 0329.76002
[31] Brown, SN; Stewartson, K., Laminar separation, Ann Rev Fluid Mech, 1, 45-72 (1969) · doi:10.1146/annurev.fl.01.010169.000401
[32] Sychev, VV, Laminar separation, Fluid Dyn, 7, 3, 407-417 (1972) · Zbl 0313.76017 · doi:10.1007/BF01209044
[33] Messiter AF (1975) Laminar separation-a local asymptotic flow description for constant pressure downstream. AGARD CP 168, Flow Separation, paper No 4
[34] Neiland VYa (1969) Theory of laminar boundary layer separation in supersonic flow. Fluid Dyn 4(4):33-35 · Zbl 0256.76041
[35] Stewartson, K.; Williams, PG, Self-induced separation, Proc R Soc Lond A, 312, 181-206 (1969) · Zbl 0184.52903 · doi:10.1098/rspa.1969.0148
[36] Stewartson, K., On the flow near the trailing edge of a flat plate II, Mathematika, 16, 1, 106-121 (1969) · Zbl 0191.25006 · doi:10.1112/S0025579300004678
[37] Messiter, AF, Boundary-layer flow near the trailing edge of a flat plate, SIAM J Appl Math, 18, 1, 241-257 (1970) · Zbl 0195.27701 · doi:10.1137/0118020
[38] Smith, FT, The laminar separation of an incompressible fluid streaming past a smooth surface, Proc R Soc Lond A, 356, 443-463 (1977) · Zbl 0376.76024 · doi:10.1098/rspa.1977.0144
[39] Korolev, GL, Numerical solution of the asymptotic problem of laminar boundary-layer separation from a smooth surface, TsAGI Sci J, 11, 2, 27-36 (1980)
[40] van Dommelen, LL; Shen, SF; Cebeci, T., Interactive separation from a fixed wall, Numerrical and physical aspects of aerodynamic flows II, 393-402 (1984), New York: Springer, New York · Zbl 0581.76047 · doi:10.1007/978-3-662-09014-5_24
[41] Ruban, AI, Fluid dynamics: part 3 boundary layers (2018), Oxford: Oxford University Press, Oxford · Zbl 1395.76001 · doi:10.1093/oso/9780199681754.001.0001
[42] Smith, FT, Laminar flow of an incompressible fluid past a bluff body: the separation, reattachment, eddy properties and drag, J Fluid Mech, 92, 1, 171-205 (1979) · Zbl 0413.76003 · doi:10.1017/S0022112079000574
[43] Ruban, AI, On laminar separation from a corner point on a solid surface, TsAGI Sci J, 5, 2, 44-54 (1974)
[44] Ruban, AI, A numerical method for solving the free-interaction problem, TsAGI Sci J, 7, 2, 45-51 (1976)
[45] Sychev VV, Ruban AI, Sychev VicV, Korolev GL (1998) Asymptotic theory of separated flows. Cambridge University Press, Cambridge · Zbl 0944.76003
[46] Kravtsova, MA, Numerical solution of the asymptotic problem of incompressible boundary-layer separation ahead of a body corner point, Comput Math Math Phys, 33, 3, 397-406 (1993) · Zbl 0798.76017
[47] Sychev VV (1967) On steady laminar flow of a fluid around a bluff body at high Reynolds number. In: Proceedings of 8th symposium on current problems of the mechanics of liquids and gases, Tarda, Poland (See TsAGI Sci J (2018) 49 (4): 373-384)
[48] Keulegan, GH, Laminar flow at the interface of two liquids, J Res Nat Bur Stand, 32, 6, 303-327 (1944) · Zbl 0061.45202 · doi:10.6028/jres.032.016
[49] Lock, RC, The velocity distribution in the laminar boundary layer between parallel streams, Q J Mech Appl Math, 4, 1, 42-63 (1951) · Zbl 0042.43002 · doi:10.1093/qjmam/4.1.42
[50] Diesperov, VN, On the flow in a Chapman mixing layer, Dokl Akad Nayk SSSR, 284, 2, 305-309 (1985) · Zbl 0644.76115
[51] Imai I (1957) Theory of bluff bodies. Tech Note BN-104, Inst Fluid Dyn Appl Math, University of Maryland
[52] Van Dyke MD (1956) Second-order subsonic airfoil theory including edge effects. NACA Rep 1274
[53] Sychev VicV (2010) On asymptotic theory of separated flows past bodies. Fluid Dyn 45(3):441-457 · Zbl 1215.76023
[54] Sychev, VV, Asymptotic theory of separated flows, Fluid Dyn, 17, 2, 179-188 (1982) · doi:10.1007/BF01314493
[55] Ruban, AI, Asymptotic theory of flow attachment for viscous incompressible fluid, Fluid Dyn, 15, 6, 844-851 (1980) · Zbl 0467.76037 · doi:10.1007/BF01096634
[56] Sychev VicV (2001) High Reynolds number flow past a plate mounted at a small angle of attack. Fluid Dyn 36(2):244-261 · Zbl 1101.76321
[57] Kármán Th V (1921) Über laminare und turbulente Reibung. ZAMM 1(4):233-252 · JFM 48.0968.01
[58] Pohlhausen, K., Zur näherungsweisen Integration der Differentialgleichung der laminaren Grenzschicht, ZAMM, 1, 4, 252-290 (1921) · JFM 48.0968.02 · doi:10.1002/zamm.19210010402
[59] Roshko, A., A review of concepts in separated flows, Proc Can Congr Appl Mech, 3, 81-115 (1967)
[60] Riabouchinsky DP (1920) On steady fluid motions with free surfaces. Proc Lond Math Soc Ser 2 19(3):206-215 · JFM 47.0756.04
[61] Yudovich, VI, On the loss of smoothness of solutions of the Euler equations with time, Dyn Contin Medium, 16, 71-78 (1974)
[62] Yudovich, VI, On gradual loss of smoothness and instability inherent to ideal fluid flows, Dokl Ross Akad Nauk, 370, 6, 760-763 (2000)
[63] Sychev VicV (2011) On regions of turbulence in separated flows. TsAGI Sci J 42(5):555-563
[64] Schlichting, H., Über das ebene Windschattenproblem., Ing-Arch, 1, 5, 533-571 (1930) · JFM 56.1261.06 · doi:10.1007/BF02079870
[65] Roshko A (1954) On the development of turbulent wakes from vortex streets. NACA Rep 1191
[66] Arie, M.; Rouse, H., Experiments on two-dimensional flow over a normal wall, J Fluid Mech, 1, 2, 129-141 (1956) · doi:10.1017/S0022112056000093
[67] Roshko, A., Transition in incompressible near-wakes, Phys Fluids Suppl, 10 pt II, 9, 181-183 (1967) · doi:10.1063/1.1762441
[68] Roshko, A.; Fiszdon, W., On the persistence of transition in the near-wake, Problems of hydrodynamics and continuum mechanics, 431-438 (1969), Moscow: Nauka, Moscow
[69] Sychev, VV, Boundary-layer separation from a flat surface, TsAGI Sci J, 9, 3, 20-29 (1978)
[70] Zubtsov, AV, Separation of a laminar boundary layer from a plane surface, TsAGI Sci J, 16, 5, 108-110 (1985)
[71] Smith, FT; Merkin, JH, Triple-deck solutions for subsonic flow past humps, steps, concave or convex corners and wedged trailing edges, Comput Fluids, 10, 1, 7-25 (1982) · Zbl 0516.76043 · doi:10.1016/0045-7930(82)90018-4
[72] Sychev VicV (2013) On the theory of the flow around bodies of revolution at high Reynolds numbers. TsAGI Sci J 44(6):727-747
[73] Sychev VicV (1993) Asymptotic theory of vortex breakdown. Fluid Dyn 28(3):356-364 · Zbl 0792.76015
[74] Sychev VicV (2005) On asymptotic theory of vortex breakdown. TsAGI Sci J 36(3-4):13-20
[75] Cheng, HK; Smith, FT, The influence of airfoil thickness and Reynolds number on separation, ZAMP, 33, 2, 151-180 (1982) · Zbl 0504.76042
[76] Rothmayer, AP; Smith, FT, Large-scale separation and hysteresis in cascades, Proc R Soc Lond A, 402, 83-108 (1985) · doi:10.1098/rspa.1985.0109
[77] Barnett, M., Analysis of crossover between local and massive separation on airfoils, AIAA J, 26, 5, 513-521 (1988) · Zbl 0664.76061 · doi:10.2514/3.9927
[78] Timoshin, SN, Separated flow around a thin profile with parabolic leading edge at high Reynolds number, TsAGI Sci J, 16, 2, 24-32 (1985)
[79] Sychev VicV (2004) On a separated flow around an arc at high Reynolds numbers. TsAGI Sci J 35(3-4):3-12
[80] Sychev VicV (2006) On the flow around an arc at high Reynolds numbers with formation of local separation regions. TsAGI Sci J 37(1-2):26-33
[81] Cheng HK (1984) Laminar separation from airfoils beyond trailing-edge stall. AIAA Paper 84-1612
[82] Khrabrov, AN, Nonuiqueness of laminar separated flow over an airfoil at angle of attack according to the Kirchhoff model, TsAGI Sci J, 16, 5, 1-9 (1985)
[83] Cheng, HK; Lee, CJ; Cebeci, T., Laminar separation studied as an airfoil problem, Numerical and physical aspects of aerodynamic flows III, 102-125 (1986), New York: Springer, New York · Zbl 0604.76046 · doi:10.1007/978-1-4612-4926-9_6
[84] Lee, CJ; Cheng, HK, An airfoil theory of bifurcating laminar separation from thin obstacles, J Fluid Mech, 216, 255-284 (1990) · Zbl 0699.76045 · doi:10.1017/S0022112090000428
[85] Chaplygin, SA, On the problem of jets in an incompressible fluid, Proc Phys Sect Soc Nat Sci, 10, 1, 35-40 (1899)
[86] Messiter AF (1979) Boundary-layer separation. In: Proceedings of 8th U.S. Natational Congress in applied mechanics, pp. 157-179. Western Periodicals, North Hollywood
[87] Sychev VicV (2007) Separation zones in the flow near a small-angle convex corner. Fluid Dyn 42(2):221-235 · Zbl 1200.76045
[88] Tulin, MP, Supercavitating flows-small perturbation theory, J Ship Res, 7, 3, 16-37 (1964) · doi:10.5957/jsr.1964.8.1.16
[89] Korolev GL, Sychev VicV (2017) On a boundary layer in a separated flow region. TsAGI Sci J 48(6):493-504
[90] Sychev VicV (2018) Marginal separation into reverse-flow region. TsAGI Sci J 49(7):683-700
[91] Rothmayer, AP; Smith, FT; Johnson, RW, High Reynolds number asymptotic theories, Handbook of fluid dynamics, Part III (1998), Boca Raton: CRC Press, Boca Raton · Zbl 0978.76001
[92] Stewartson, K., Multistruetured boundary layers on flat plates and related bodies, Adv Appl Mech, 14, 145-239 (1974) · doi:10.1016/S0065-2156(08)70032-2
[93] Stewartson, K., D’Aembert’s paradox, SIAM Rev, 23, 3, 308-343 (1981) · Zbl 0484.76002 · doi:10.1137/1023063
[94] Smith, FT, On the high Reynolds number theory of laminar flows, IMA J Appl Math, 28, 3, 207-281 (1982) · Zbl 0494.76042 · doi:10.1093/imamat/28.3.207
[95] Smith, FT, Steady and unsteady boundary-layer separation, Ann Rev Fluid Mech, 18, 197-220 (1986) · Zbl 0615.76048 · doi:10.1146/annurev.fl.18.010186.001213
[96] Kluwick, A.; Kluwick, A., Interacting laminar and turbulent boundary layers, Recent advances in boundary layer theory, 231-330 (1998), Wien: Springer, Wien · Zbl 0909.76023 · doi:10.1007/978-3-7091-2518-2_7
[97] Cowley, SJ; Aref, H.; Philips, JW, Laminar boundary-layer theory: a 20th century paradox?, Mechanics for a new millennium, 389-412 (2001), Alphen aan den Rijn: Kluwer, Alphen aan den Rijn
[98] Neiland, VYa; Bogolepov, VV; Dudin, GN; Lipatov, II, Asymptotic theory of supersonic viscous gas flows (2008), Oxford: Elsevier, Oxford
[99] Adamson, TC Jr; Messiter, AF, Analysis of two-dimensional interactions between shock waves and boundary layers, Ann Rev Fluid Mech, 12, 103-138 (1980) · Zbl 0498.76062 · doi:10.1146/annurev.fl.12.010180.000535
[100] Smith, FT, On internal fluid dynamics, Bull Math Sci, 2, 1, 125-180 (2012) · Zbl 1246.00022 · doi:10.1007/s13373-012-0019-6
[101] Smith, FT, On the non-parallel flow stability of the Blasius boundary layer, Proc R Soc Lond A, 366, 91-109 (1979) · Zbl 0411.76042 · doi:10.1098/rspa.1979.0041
[102] Zhuk, VI, Tollmien-Schlichting waves and solitons (2001), Moscow: Nauka, Moscow
[103] Cowley SJ, Wu X (1994) Asymptotic approaches to transition modeling. In: Progress in transition modeling, AGARD Rep 793. Chap. 3, pp 1-38
[104] Ruban, AI, Asymptotic theory of short separation regions on the leading edge of a slender airfoil, Fluid Dyn, 17, 1, 33-41 (1982) · Zbl 0528.76043 · doi:10.1007/BF01090696
[105] Stewartson, K.; Smith, FT; Kaups, K., Marginal separation., Stud Appl Math, 67, 1, 45-61 (1982) · Zbl 0514.76039 · doi:10.1002/sapm198267145
[106] Ruban, AI, A singular solution of the boundary layer equations which can be extended continuously through the point of zero surface friction, Fluid Dyn, 16, 6, 835-843 (1981) · Zbl 0504.76041 · doi:10.1007/BF01089710
[107] Brown, SN; Stewartson, K., On an integral equation of marginal separation, SIAM J Appl Math, 43, 5, 1119-1126 (1983) · Zbl 0531.76045 · doi:10.1137/0143072
[108] Zametaev, VB, Marginal separation in three-dimensional flows, Theor Comput Fluid Dyn, 8, 3, 183-200 (1996) · Zbl 0865.76017 · doi:10.1007/BF00418057
[109] Braun S, Scheichl S (2014) On recent developments in marginal separation theory. Philos Trans R Soc Lond A 372:20130343 · Zbl 1353.76040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.