×

Monotone approximation of random functions with multivariate domains in respect of lattice semi-norms. (English) Zbl 0741.41018

Summary: Consider the problem of approximating a random function which is defined on a compact and convex subset of a topological vector space. For monotone approximation procedures global and local error bounds with respect to lattice semi-norms are established.

MSC:

41A30 Approximation by other special function classes
41A25 Rate of convergence, degree of approximation
Full Text: DOI

References:

[1] Anastassiou, G.A.: (1985a) Miscellaneous sharp inequalities and Korovkin-type convergence theorems involving sequences of probability measures. J. Approx. Theory 44, 384–390. · Zbl 0573.42004 · doi:10.1016/0021-9045(85)90088-7
[2] Anastassiou, G.A.: (1985b) A study of positive linear operators by the method of moments, one-dimensional case. J. Approx. Theory 45, 247–270. · Zbl 0571.41019 · doi:10.1016/0021-9045(85)90049-8
[3] Anastassiou, G.A.: (1987) On the degree of weak convergence of a sequence of finite measures to the unit measure under convexity. J. Approx. Theory 51, 333–349. · Zbl 0632.41014 · doi:10.1016/0021-9045(87)90042-6
[4] Anastassiou, G.A.: (1989a) Smooth rate of weak convergence of convex type positive finite measures. J. Math. Anal. Appl. (to appear).
[5] Anastassiou, G.A.: (1989b) Rate of convergence of non-positive generalized convolution type operators. J. Math. Anal. Appl. (to appear). · Zbl 0678.41025
[6] Berens, H., Lorentz, G.G.: (1973) Theorems of Korovkin type for positive linear operators on Banach lattices. In: Approximation theory (edited by G.G. Lorentz), 1–30. New York: Academic Press. · Zbl 0322.41017
[7] Cheney, E.W.: (1966) Introduction to approximation theory. New York: McGraw-Hill. · Zbl 0161.25202
[8] Censor, E.: (1971) Quantitative results for positive linear approximation operators. J. Approx. Theory 4, 442–450. · Zbl 0233.41004 · doi:10.1016/0021-9045(71)90009-8
[9] De Vore, R.A.: (1972) The approximation of continuous functions by positive linear operators. Lecture notes in mathematics, Vol. 293. Berlin, New York: Springer. · Zbl 0252.41017
[10] Ditzian, Z.: (1986)Inverse theorems for multidimensional Bernstein operators. Pacific J. Math. 121, 293–319. · Zbl 0581.41023 · doi:10.2140/pjm.1986.121.293
[11] Donner, K.: (1982)Extensions of positive operators and Korovkin theorems. Lecture notes in mathematics, Vol. 904. Berlin, New York: Springer. · Zbl 0481.47024
[12] Gonska, H.H.: (1983) On approximation of continuously differentiable functions by positive linear operators. Bull. Austral. Math. Soc. 27, 73–81. · Zbl 0494.41014 · doi:10.1017/S0004972700011497
[13] Gonska, H.H., Meier-Gonska, J.: (1986) A bibliography on approximation of functions by Bernatein-type operators. In: Approximation Theory V (edited by C.K. Chui, L.L. Schumaker and J.D. Ward), 621–654. Orlando: Academic Press. · Zbl 0615.41019
[14] Hahn, L.: (1982) Stochastic methods in connections with approximation theorems for positive linear operators. Pacific J. Math. 101, 307–319. · Zbl 0458.41016 · doi:10.2140/pjm.1982.101.307
[15] Keimel, K., Roth, W.: (1988) A Korovkin type approximation theorem for set-valued functions. Proc. Amer. Math. Soc. 104, 819–823. · Zbl 0693.47032 · doi:10.1090/S0002-9939-1988-0964863-8
[16] Keimel, K., Roth, W.: (1990) Ordered cones and approximation. Preprint, Department of Mathematics, University of Bahrain. · Zbl 0752.41033
[17] Luxemburg, W.A.J., Zaanen, A.C.: (1971) Riesz spaces I. Amsterdam: North Holland. · Zbl 0231.46014
[18] Mond, B., Vasudevan, R.: (1980) On approximation by linear positive operators. J. Approx. Theory 30, 334–336. · Zbl 0521.41018 · doi:10.1016/0021-9045(80)90035-0
[19] Nishishiraho, T.: (1982) Quantitative theorems on approximation processes of positive linear operators. In: Multivariate approximation theory II (edited by W. Schempp and K. Zeller), ISNM 61, 297-311. Basel, Boston, Stuttgart: Birkhäuser. · Zbl 0498.41014
[20] Roth, W.: (1989) Families of convex subsets and Korovkin type theorems in locally convex spaces. Rev. Roumaine Math. Pures et Appl. 34, 329–346. · Zbl 0684.46014
[21] Sablonnière, P.: (1988) Positive spline operators and orthogonal splines. J. Approx. Theory 52, 28–42. · Zbl 0672.41008 · doi:10.1016/0021-9045(88)90035-4
[22] Schaefer, H.H.: (1974) Banach lattices and positive operators. Berlin: Springer. · Zbl 0296.47023
[23] Scheffold, E.: (1973) Ein allgemeiner Korovkin-Satz für lokalkonvexe Vektorverbände. Math. Z. 132, 209–214. · Zbl 0255.46007 · doi:10.1007/BF01213865
[24] Schempp, W.: (1972) A note on Korovkin test families. Arch. Math. 23, 521–524. · Zbl 0229.41013 · doi:10.1007/BF01304926
[25] Weba, M.: (1986) Korovkin systems of stochastic processes. Math. Z. 192, 73–80. · Zbl 0598.60058 · doi:10.1007/BF01162021
[26] Weba, M.: (1989) Quantitative results on monotone approximation of stochastic processes. Probab. Math. Statist. (to appear). · Zbl 0756.60049
[27] Weba, M.: (1990) A quantitative Korovkin theorem for random functions with multivariate domains. J. Approx. Theory 61, 74–87. · Zbl 0698.41016 · doi:10.1016/0021-9045(90)90024-K
[28] Wolff, M.: (1978) On the universal Korovkin closure of subsets in vector lattices. J. Approx. Theory 22, 243–253. · Zbl 0392.41017 · doi:10.1016/0021-9045(78)90056-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.