Skip to main content
Log in

Monotone Approximation of Random Functions with Multivariate Domains in Respect of Lattice Semi-Norms

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Consider the problem of approximating a random function which is defined on a compact and convex subset of a topological vector space. For monotone approximation procedures, global and local error bounds with respect to lattice semi-norms are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anastassiou, G.A.: (1985a) Miscellaneous sharp inequalities and Korovkin-type convergence theorems involving sequences of probability measures. J. Approx. Theory 44, 384–390.

    Article  MathSciNet  MATH  Google Scholar 

  • Anastassiou, G.A.: (1985b) A study of positive linear operators by the method of moments, one-dimensional case. J. Approx. Theory 45, 247–270.

    Article  MathSciNet  MATH  Google Scholar 

  • Anastassiou, G.A.: (1987) On the degree of weak convergence of a sequence of finite measures to the unit measure under convexity. J. Approx. Theory 51, 333–349.

    Article  MathSciNet  MATH  Google Scholar 

  • Anastassiou, G.A.: (1989a) Smooth rate of weak convergence of convex type positive finite measures. J. Math. Anal. Appl. (to appear).

  • Anastassiou, G.A.: (1989b) Rate of convergence of non-positive generalized convolution type operators. J. Math. Anal. Appl. (to appear).

  • Berens, H., Lorentz, G.G.: (1973) Theorems of Korovkin type for positive linear operators on Banach lattices. In: Approximation theory (edited by G.G. Lorentz), 1–30. New York: Academic Press.

    Google Scholar 

  • Cheney, E.W.: (1966) Introduction to approximation theory. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Censor, E.: (1971) Quantitative results for positive linear approximation operators. J. Approx. Theory 4, 442–450.

    Article  MathSciNet  MATH  Google Scholar 

  • De Vore, R.A.: (1972) The approximation of continuous functions by positive linear operators. Lecture notes in mathematics, Vol. 293. Berlin, New York: Springer.

    Google Scholar 

  • Ditzian, Z.: (1986)Inverse theorems for multidimensional Bernstein operators. Pacific J. Math. 121, 293–319.

    Article  MathSciNet  MATH  Google Scholar 

  • Donner, K.: (1982)Extensions of positive operators and Korovkin theorems. Lecture notes in mathematics, Vol. 904. Berlin, New York: Springer.

    Google Scholar 

  • Gonska, H.H.: (1983) On approximation of continuously differentiable functions by positive linear operators. Bull. Austral. Math. Soc. 27, 73–81.

    Article  MathSciNet  MATH  Google Scholar 

  • Gonska, H.H., Meier-Gonska, J.: (1986) A bibliography on approximation of functions by Bernatein-type operators. In: Approximation Theory V (edited by C.K. Chui, L.L. Schumaker and J.D. Ward), 621–654. Orlando: Academic Press.

    Google Scholar 

  • Hahn, L.: (1982) Stochastic methods in connections with approximation theorems for positive linear operators. Pacific J. Math. 101, 307–319.

    Article  MathSciNet  MATH  Google Scholar 

  • Keimel, K., Roth, W.: (1988) A Korovkin type approximation theorem for set-valued functions. Proc. Amer. Math. Soc. 104, 819–823.

    Article  MathSciNet  MATH  Google Scholar 

  • Keimel, K., Roth, W.: (1990) Ordered cones and approximation. Preprint, Department of Mathematics, University of Bahrain.

  • Luxemburg, W.A.J., Zaanen, A.C.: (1971) Riesz spaces I. Amsterdam: North Holland.

  • Mond, B., Vasudevan, R.: (1980) On approximation by linear positive operators. J. Approx. Theory 30, 334–336.

    Article  MathSciNet  Google Scholar 

  • Nishishiraho, T.: (1982) Quantitative theorems on approximation processes of positive linear operators. In: Multivariate approximation theory II (edited by W. Schempp and K. Zeller), ISNM 61, 297-311. Basel, Boston, Stuttgart: Birkhäuser.

    Google Scholar 

  • Roth, W.: (1989) Families of convex subsets and Korovkin type theorems in locally convex spaces. Rev. Roumaine Math. Pures et Appl. 34, 329–346.

    MATH  Google Scholar 

  • Sablonnière, P.: (1988) Positive spline operators and orthogonal splines. J. Approx. Theory 52, 28–42.

    Article  MathSciNet  Google Scholar 

  • Schaefer, H.H.: (1974) Banach lattices and positive operators. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Scheffold, E.: (1973) Ein allgemeiner Korovkin-Satz für lokalkonvexe Vektorverbände. Math. Z. 132, 209–214.

    Article  MathSciNet  MATH  Google Scholar 

  • Schempp, W.: (1972) A note on Korovkin test families. Arch. Math. 23, 521–524.

    Article  MathSciNet  MATH  Google Scholar 

  • Weba, M.: (1986) Korovkin systems of stochastic processes. Math. Z. 192, 73–80.

    Article  MathSciNet  MATH  Google Scholar 

  • Weba, M.: (1989) Quantitative results on monotone approximation of stochastic processes. Probab. Math. Statist. (to appear).

  • Weba, M.: (1990) A quantitative Korovkin theorem for random functions with multivariate domains. J. Approx. Theory 61, 74–87.

    Article  MathSciNet  MATH  Google Scholar 

  • Wolff, M.: (1978) On the universal Korovkin closure of subsets in vector lattices. J. Approx. Theory 22, 243–253.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weba, M. Monotone Approximation of Random Functions with Multivariate Domains in Respect of Lattice Semi-Norms. Results. Math. 20, 554–576 (1991). https://doi.org/10.1007/BF03323193

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03323193

Keywords

Navigation