×

Adjoint-based sensitivity analysis of viscoelastic fluids at a low Deborah number. (English) Zbl 1510.76010

MSC:

76-10 Mathematical modeling or simulation for problems pertaining to fluid mechanics

Software:

FEniCS
Full Text: DOI

References:

[1] Lovato, S.; Toxopeus, S. L.; Settels, J. W.; Keetels, G. H.; Vaz, G., Code verification of non-Newtonian fluid solvers for single- and two-phase laminar flows, J. Verification Valid. Uncertain.Qunatification, 021002 (2021)
[2] Kim, J.; Park, J. D., The non-homogeneous flow of a thixotropic fluid around a sphere, Appl. Math. Model., 82, 848-866 (2020) · Zbl 1481.76011
[3] Kumar, A.; Ridha, S.; Narahari, M.; Ilyas, S. M., Physics-guided deep neural network to characterize non-Newtonian fluid flow for optimal use of energy resources, Expert Syst. Appl., 183, 115409 (2021)
[4] Kim, J.; Singh, P. K.; Freund, J. B.; Ewoldt, R. H., Uncertainty propagation in simulation predictions of generalized newtonian fluid flows, J. Non-Newt. Fluid Mech., 271, 104138 (2019)
[5] Giannetti, F.; Luchini, P., Structural sensitivity of the first instability of the cylinder wake, J. Fluid Mech., 581, 167-197 (2007) · Zbl 1115.76028
[6] Jameson, A., Aerodynamic design via control theory, J. Sci. Comput., 3, 233-260 (1988) · Zbl 0676.76055
[7] Bewley, T. R.; Moin, P.; Temam, R., DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms, J. Fluid Mech., 447, 179-225 (2001) · Zbl 1036.76027
[8] Wei, M.; Freund, J. B., A noise-controlled free shear flow, J. Fluid Mech., 546, 123-152 (2005) · Zbl 1222.76084
[9] Freund, J. B., Adjoint-based optimization for understanding and suppressing jet noise, J. Sound Vib., 330, 4114-4122 (2011)
[10] Freund, J. B.; Kim, J.; Ewoldt, R. H., Field sensitivity of flow predictions to rheological parameters, J. Nonnewton Fluid Mech., 257, 71-82 (2018)
[11] Williams, M. L.; Landel, R. F.; Ferry, J. D., The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, J. Am. Chem. Soc., 3701-3707 (1955)
[12] Nelson, A. Z.; Kundukad, B.; Wong, W. K.; Khan, S. A.; Doyle, P. S., Embedded droplet printing in yield-stress fluids, Proc. Natl. Acad. Sci. U.S.A., 5671-5679 (2020) · Zbl 1456.76009
[13] Blaeser, A.; Campos, D. F.D.; Richtering, W.; Stevens, M. M.; Fischer, H., Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity, Adv. Healthc Mater., 326-333 (2015)
[14] Choueiri, G. H.; Lopez, J. M.; Hof, B., Exceeding the asymptotic limit of polymer drag reduction, Phys. Rev. Lett., 124501 (2018)
[15] Ewoldt, R. H.; Saengow, C., Designing complex fluids, Annu. Rev. Fluid Mech., 54, 413-441 (2022) · Zbl 1491.76003
[16] Zhang, Z.; Mao, Y.; Su, X.; Yuan, X., Adjoint-based boundary condition sensitivity analysis, AIAA J., 60, 3517-3527 (2022)
[17] Lions, J. L., On the controllability of distributed systems, Proc. Natl. Acad. Sci., 94, 4828-4835 (1997) · Zbl 0876.93044
[18] Nadarajah, S. K., The discrete adjoint approach to aerodynamic shape optimization (2003), Standford University, Ph.D. thesis
[19] Gunzburger, M. D., Perspectives in Flow Control and Optimization (2002), SIAM
[20] Farrell, P. E.; Ham, D. A.; Funke, S. W.; Rognes, M. E., Automated derivation of the adjoint of high-level transient finite element programs, SIAM J. Sci. Comput., 35, 4, C369-C393 (2013) · Zbl 1362.65103
[21] Chatellin, S.; Charpentier, I.; Corbin, N.; Meylheuc, L.; Vappou, J., An automatic differentiation-based gradient method for inversion of the shear wave equation in magnetic resonance elastography: specific application in fibrous soft tissues, Phys. Med. Biol., 61, 5000 (2016)
[22] Martin, N.; Monnier, J., Inverse rheometry and basal properties inference for pseudoplastic geophysical flows, Eur. J. Mech. B/Fluids, 50, 110-126 (2015) · Zbl 1408.76015
[23] Giles, M. B.; Pierce, N. A., Adjoint equations in CFD - Duality, boundary conditions and solution behaviour (1997)
[24] Issacson, E., Some periodic solutions of the two-dimensional stokes-Oldroyd-B system with stress diffusion (2012), University of California, Berkeley, Ph.D. thesis
[25] Chatellin, S.; Charpentier, I.; Corbin, N.; Meylheuc, L.; Vappou, J., Viscoelastic microfluidics: progress and challenges, Microsyst. Nanoeng., 6, 113 (2020)
[26] Baird, D.; Renardy, M., Report on the VIIth international workshop on numerical methods in non-newtonian flow, J. Nonnewton Fluid Mech., 43, 386 (1992)
[27] Fan, Y.; Tanner, R. I.; Phan-Thien, N., Galerkin/least-square finite-element methods for steady viscoelastic flows, J. Nonnewton Fluid Mech., 84, 233-256 (1999) · Zbl 0956.76042
[28] Hulsen, M. A.; Fattal, R.; Kupferman, R., Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms, J. Nonnewton Fluid Mech., 127, 27-39 (2005) · Zbl 1187.76615
[29] Fattal, R.; Kupferman, R., Constitutive laws for the matrix-logarithm of the conformation tensor, J. Nonnewton Fluid Mech., 123, 281-285 (2004) · Zbl 1084.76005
[30] Owens, R. G.; Chauviére, C.; Philips, T. N., A locally-upwinded spectral technique (LUST) for viscoelastic flows, J. Nonnewton Fluid Mech., 108, 49-71 (2002) · Zbl 1143.76523
[31] Knechtges, P.; Behr, M.; Elgeti, S., Fully-implicit log-conformation formulation of constitutive laws, J. Nonnewton Fluid Mech., 214, 78-87 (2014)
[32] Alves, M. A.; Pinho, F. T.; Oliveira, P. J., The flow of viscoelastic fluids past a cylinder: finite-volume high-resolution methods, J. Nonnewton Fluid Mech., 97, 207-232 (2001) · Zbl 1030.76034
[33] Carrozza, M. A.; Hulsen, M. A.; Hütter, M.; Anderson, P. D., Viscoelastic fluid flow simulation using the contravariant deformation formulation, J. Nonnewton Fluid Mech., 270, 23-35 (2019)
[34] Chilcott, M. D.; Rallison, J. M., Creeping flow of dilute polymer solutions past cylinders and spheres, J. Nonnewton Fluid Mech., 29, 381-432 (1988) · Zbl 0669.76016
[35] Claus, S.; Phillips, T. N., Viscoelastic flow around a confined cylinder using spectral/hp element methods, J. Nonnewton Fluid Mech., 200, 131-146 (2013)
[36] Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S., A monolithic FEM approach for the log-conformation reformulation (LCR) of viscoelastic flow problems, J. Nonnewton Fluid Mech., 165, 1105-1113 (2010) · Zbl 1274.76100
[37] Faroughi, S. A.; Fernandes, C.; Nóbrega, J. M.; McKinley, G. H., A closure model for the drag coefficient of a sphere translating in a viscoelastic fluid, J. Nonnewton Fluid Mech., 104218 (2020)
[38] Fernandes, C.; Vukevi, V.; Uroi, T.; Simoes, R.; Carneiro, O. S.; Jasak, H.; Nóbrega, J. M., A coupled finite volume flow solver for the solution of incompressible viscoelastic flows, J. Nonnewton Fluid Mech., 265, 99-115 (2019)
[39] Alves, M. A.; Oliveira, P. J.; Pinho, F. T., Numerical methods for viscoelastic fluid flows, Annu. Rev. Fluid Mech., 53, 509-541 (2021) · Zbl 1459.76084
[40] Oldroyd, J. G., On the formulation of rheological equation of state, Proc. R. Soc. A, 200, 523-541 (1950) · Zbl 1157.76305
[41] Prilutski, G.; Gupta, R. K.; Sridhar, T.; Ryan, M. E., Model viscoelastic liquids, J. Nonnewton Fluid Mech., 12, 233-241 (1983)
[42] Weissenberg, K., A continuum theory of rheological phenomena, Nature, 159, 310-311 (1947)
[43] Bird, R. B.; Armstrong, R. C.; Hassager, O., Dynamics of Polymeric Liquids, Vol. 1: Fluid mechanics (1987), Wiley
[44] McKinley, G. H.; Armstrong, R. C.; Brown, R., The wake instability in viscoelastic flow past confined circular cylinders, Philos. Trans. R. Soc. A, 344, 265-304 (1993)
[45] Dealy, J. M., Weissenberg and Deborah numbers –their definition and use, Rheol. Bull., 79, 14-18 (2010)
[46] Renardy, M.; Thomases, B., A mathematician’s perspective on the Oldroyd B model: progress and future challenges, J. Nonnewton Fluid Mech., 293, 104573 (2021)
[47] Bird, R.; Dotson, P.; Johnson, N. L., Polymer solution rheology based on a finitely extensible bead-spring chain model, J. Nonnewton Fluid Mech., 7, 213-235 (1980) · Zbl 0432.76012
[48] Giesekus, H., A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility, J. Nonnewton Fluid Mech., 11, 69-109 (1982) · Zbl 0492.76004
[49] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 32, 199-259 (1982) · Zbl 0497.76041
[50] Fortin, A.; Fortin, M., A preconditioned generalized minimal residual algorithm for the numerical solution of viscoelastic fluid flows, J. Nonnewton Fluid Mech., 36, 277-288 (1990) · Zbl 0708.76012
[51] Luo, X.-L.; Tanner, R. I., A streamline element scheme for solving viscoelastic flow problems. Part I. Differential constitutive equations, J. Nonnewton Fluid Mech., 21, 2, 179-199 (1986) · Zbl 0593.76012
[52] Crochet, M. J.; Davies, A. R.; Walter, K., Numerical Simulation of Non-Newtonian Flow (1984), Elsevier: Elsevier Amsterdam · Zbl 0583.76002
[53] Marchal, J. M.; Crochet, M. J., A new mixed finite element for calculating viscoelastic flow, J. Nonnewton Fluid Mech., 26, 77-114 (1987) · Zbl 0637.76009
[54] Lee, J.; Hwang, W. R.; Cho, K. S., Effect of stress diffusion on the Oldroyd-B fluid flow past a confined cylinder, J. Nonnewton Fluid Mech., 297, 104650 (2021)
[55] Alnaes, M. S.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M. E.; Wells, G. N., The FEniCS project version 1.5, Arch. Numer. Softw., 3 (2015)
[56] Dou, H.-S.; Phan-Thien, N., The flow of an Oldroyd-B fluid past a cylinder in a channel: adaptive viscosity vorticity (DAVSS-w) formulation, J. Nonnewton Fluid Mech., 87, 1, 47-73 (1999) · Zbl 0966.76052
[57] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing (1997), Birkhäuser Press), 163-202 · Zbl 0882.65154
[58] Kim, J.; Kim, C.; Ahn, K. H.; Lee, S. J., An efficient iterative solver and high-resolution computations of the Oldroyd-B fluid flow past a confined cylinder, J. Nonnewton Fluid Mech., 123, 161-173 (2004) · Zbl 1134.76388
[59] Afonso, A.; Oliveira, P. J.; Pinho, F. T.; Alves, M. A., The log-conformation tensor approach in the finite-volume method framework, J. Nonnewton Fluid Mech., 157, 55-65 (2009) · Zbl 1274.76084
[60] Viezel, C.; Tome, M. F.; Pinho, F. T.; McKee, S., An Oldroyd-B solver for vanishingly small values of the viscosity ratio: application to unsteady free surface flow, J. Nonnewton Fluid Mech., 285, 104338 (2020)
[61] Binagia, J. P.; Guido, C. J.; Shaqfeh, E. S.G., Three-dimensional simulations of undulatory and amoeboid swimmers in viscoelastic fluids, Soft Matter, 15, 4836-4855 (2019)
[62] Dasgupta, M.; Liu, B.; Fu, H. C.; Berhanu, M.; Breuer, K. S.; Powers, T. R.; Kudrolli, A., Speed of a swimming sheet in Newtonian and viscoelastic fluids, Phys. Rev. E, 87, 013015 (2013)
[63] Celli, J. P.; Turner, B. S.; Afdhal, N. H.; Keates, S.; Ghiran, I.; Kelly, C. P.; Ewoldt, R. H.; Mckinley, G. H.; So, P.; Erramilli, S.; Bansil, R., Helicobacter pylori moves through mucus by reducing mucin viscoelasticity, Proc. Natl. Acad. Sci., 106, 14321-14326 (2009)
[64] Thomases, B.; Shelley, M., Dynamics of high-Deborah-number entry flows: a numerical study, J. Fluid Mech., 677, 272-304 (2011) · Zbl 1241.76062
[65] Al-Muslimawi, A.; Tamaddon-Jahromi, H. R.; Webster, M. F., Simulation of viscoelastic and viscoelastoplastic die-swell flows, J. Nonnewton Fluid Mech., 191, 45-56 (2013)
[66] Thomases, B.; Shelley, M., Emergence of singular structures in Oldroyd-B fluids, Phys. Fluids, 19, 103103 (2007) · Zbl 1182.76758
[67] Kim, J.; Park, J. D., A thixotropic fluid flow around two sequentially aligned spheres, Korean J. Chem. Eng., 38, 1460-1468 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.