×

Embedded droplet printing in yield-stress fluids. (English) Zbl 1456.76009

Summary: Microfluidic tools and techniques for manipulating fluid droplets have become core to many scientific and technological fields. Despite the plethora of existing approaches to fluidic manipulation, non-Newtonian fluid phenomena are rarely taken advantage of. Here we introduce embedded droplet printing – a system and methods for the generation, trapping, and processing of fluid droplets within yield-stress fluids, materials that exhibit extreme shear thinning. This technique allows for the manipulation of droplets under conditions that are simply unattainable with conventional microfluidic methods, namely the elimination of exterior influences including convection and solid boundaries. Because of this, we believe embedded droplet printing approaches an ideal for the experimentation, processing, or observation of many samples in an “absolutely quiescent” state, while also removing some troublesome aspects of microfluidics including the use of surfactants and the complexity of device manufacturing. We characterize a model material system to understand the process of droplet generation inside yield-stress fluids and develop a nascent set of archetypal operations that can be performed with embedded droplet printing. With these principles and tools, we demonstrate the benefits and versatility of our method, applying it toward the diverse applications of pharmaceutical crystallization, microbatch chemical reactions, and biological assays.

MSC:

76A05 Non-Newtonian fluids

Software:

GitHub

References:

[1] A. R. Abate et al ., Synthesis of monodisperse microparticles from non-Newtonian polymer solutions with microfluidic devices. Adv. Mater. 23, 1757-1760 (2011).
[2] A. J. DeMello, Control and detection of chemical reactions in microfluidic systems. Nature 442, 394-402 (2006). · doi:10.1038/nature05062
[3] S. Mashaghi, A. Abbaspourrad, D. A. Weitz, A. M. van Oijen, Droplet microfluidics: A tool for biology, chemistry and nanotechnology. TrAC Trends Analyt. Chem. 82, 118-125 (2016).
[4] T. S. Kaminski, O. Scheler, P. Garstecki, Droplet microfluidics for microbiology: Techniques, applications and challenges. Lab Chip 16, 2168-2187 (2016). · doi:10.1039/c6lc00367b
[5] F. Paratore, V. Bacheva, G. V. Kaigala, M. Bercovici, Dynamic microscale flow patterning using electrical modulation of zeta potential. Proc. Natl. Acad. Sci. U.S.A. 116, 10258-10263 (2019).
[6] E. J. Walsh et al ., Microfluidics with fluid walls. Nat. Commun. 8, 816 (2017).
[7] B. P. Casavant et al ., Suspended microfluidics. Proc. Natl. Acad. Sci. U.S.A. 110, 10111-10116 (2013).
[8] E. Berthier, A. M. Dostie, U. N. Lee, J. Berthier, A. B. Theberge, Open microfluidic capillary systems. Anal. Chem. 91, 8739-8750 (2019).
[9] B. Kim et al ., Normal stress difference-driven particle focusing in nanoparticle colloidal dispersion. Sci. Adv. 5, v4819 (2019).
[10] E. J. Lim et al ., Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nat. Commun. 5, 4120 (2014).
[11] C. H. Lee, V. Moturi, Y. Lee, Thixotropic property in pharmaceutical formulations. J. Control. Release 136, 88-98 (2009).
[12] E. A. Appel et al ., Self-assembled hydrogels utilizing polymer-nanoparticle interactions. Nat. Commun. 6, 6295 (2015).
[13] J. E. Mealy et al ., Injectable granular hydrogels with multifunctional properties for biomedical applications. Adv. Mater. 30, e1705912 (2018).
[14] J. A. Lewis, Direct-write assembly of ceramics from colloidal inks. Curr. Opin. Solid State Mater. Sci. 6, 245-250 (2002).
[15] A. K. Grosskopf et al ., Viscoplastic matrix materials for embedded 3D printing. ACS Appl. Mater. Interfaces 10, 23353-23361 (2018).
[16] B. M. Rauzan, A. Z. Nelson, S. E. Lehman, R. H. Ewoldt, R. G. Nuzzo, Particle-free emulsions for 3D printing elastomers. Adv. Funct. Mater. 28, 1-12 (2018). · doi:10.1002/adfm.201704987
[17] A. Z. Nelson et al ., Designing and transforming yield-stress fluids. Curr. Opin. Solid State Mater. Sci. 23, 100758 (2019).
[18] A. Z. Nelson, R. H. Ewoldt, Design of yield-stress fluids: A rheology-to-structure inverse problem. Soft Matter 13, 7578-7594 (2017).
[19] J. T. Muth et al ., Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater. 26, 6307-6312 (2014).
[20] A. N. Beris, J. A. Tsamopoulos, R. C. Armstrong, R. A. Brown, Creeping motion of a sphere through a Bingham plastic. J. Fluid Mech. 158, 219-244 (1985). · Zbl 0581.76010
[21] H. Emady, M. Caggioni, P. Spicer, Colloidal microstructure effects on particle sedimentation in yield stress fluids. J. Rheol. 57, 1761-1772 (2013).
[22] M. Beaulne, E. Mitsoulis, Creeping motion of a sphere in tubes filled with Herschel-Bulkley fluids. J. Non-Newton. Fluid Mech. 72, 55-71 (1997).
[23] R. P. Chhabra, Bubbles, Drops, and Particles in Non-Newtonian Fluids (CRC Press, 2006).
[24] W. Wu, A. DeConinck, J. A. Lewis, Omnidirectional printing of 3D microvascular networks. Adv. Mater. 23, H178-H183 (2011).
[25] C. S. O’Bryan et al ., Three-dimensional printing with sacrificial materials for soft matter manufacturing. MRS Bull. 42, 571-577 (2017).
[26] C. S. O’Bryan et al ., Self-assembled micro-organogels for 3D printing silicone structures. Sci. Adv. 3, e1602800 (2017).
[27] J. M. Piau, Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges. Meso- and macroscopic properties, constitutive equations and scaling laws. J. Non-Newton. Fluid Mech. 144, 1-29 (2007).
[28] D. Bonn, M. M. Denn, Yield stress fluids slowly yield to analysis. Science 324, 1401-1402 (2009).
[29] L. Jørgensen, M. Le Merrer, H. Delanoë-Ayari, C. Barentin, Yield stress and elasticity influence on surface tension measurements. Soft Matter 11, 5111-5121 (2015).
[30] C. A. Stan, S. K. Y. Tang, G. M. Whitesides, Independent control of drop size and velocity in microfluidic flow-focusing generators using variable temperature and flow rate. Anal. Chem. 81, 2399-2402 (2009).
[31] P. B. Umbanhowar, V. Prasad, D. A. Weitz, Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 16, 347-351 (2000). · doi:10.1021/la990101e
[32] H. Leuenberger, New trends in the production of pharmaceutical granules: Batch versus continuous processing. Eur. J. Pharm. Biopharm. 52, 289-296 (2001).
[33] F. J. Muzzio, T. Shinbrot, B. J. Glasser, Powder technology in the pharmaceutical industry: The need to catch up fast. Powder Technol. 124, 1-7 (2002). · doi:10.1016/S0032-5910(01)00482-X
[34] H. Chen, A. Aburub, C. C. Sun, Direct compression tablet containing 99
[35] B. Ahmed et al ., Engineering of acetaminophen particle attributes using a wet milling crystallisation platform. Int. J. Pharm. 554, 201-211 (2019).
[36] E. W. Q. Yeap, A. J. Acevedo, S. A. Khan, Microfluidic extractive crystallization for spherical drug/drug-excipient microparticle production. Org. Process Res. Dev. 23, 375-381 (2019).
[37] K. A. Reddy, L. K. Doraiswamy, Estimating liquid diffusivity. Ind. Eng. Chem. Fundam. 6, 77-79 (1967).
[38] J. S. Song, Y. T. Sohn, Crystal forms of naproxen. Arch. Pharm. Res. 34, 87-90 (2011).
[39] K. F. Jensen, Flow chemistry-Microreaction technology comes of age. AIChE J. 63, 858-869 (2017).
[40] T. S. Kaminski, P. Garstecki, Controlled droplet microfluidic systems for multistep chemical and biological assays. Chem. Soc. Rev. 46, 6210-6226 (2017).
[41] L. Mazutis, “Microfluidic system and methods for highly selective droplet fusion.” US Patent 9446360B2 (2010).
[42] R. Mukhopadhyay, When microfluidic devices go bad. Anal. Chem. 77, 429 A-432 A (2005).
[43] I. Pastoriza-Santos, L. M. Liz-Marzán, Colloidal silver nanoplates. State of the art and future challenges. J. Mater. Chem. 18, 1724-1737 (2008). · doi:10.1039/b716538b
[44] E. Dressaire, A. Sauret, Clogging of microfluidic systems. Soft Matter 13, 37-48 (2016).
[45] S. Zhang et al ., Microfluidic platform for optimization of crystallization conditions. J. Cryst. Growth 472, 18-28 (2017).
[46] Q. Zhang, N. Li, J. Goebl, Z. Lu, Y. Yin, A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent? J. Am. Chem. Soc. 133, 18931-18939 (2011). · doi:10.1021/ja2080345
[47] G. Amselem, C. Guermonprez, B. Drogue, S. Michelin, C. N. Baroud, Universal microfluidic platform for bioassays in anchored droplets. Lab Chip 16, 4200-4211 (2016).
[48] P. Gruner et al ., Controlling molecular transport in minimal emulsions. Nat. Commun. 7, 10392 (2016). · doi:10.1038/ncomms10392
[49] B. Kundukad et al ., Mechanistic action of weak acid drugs on biofilms. Sci. Rep. 7, 4783 (2017).
[50] B. Kundukad et al ., Weak acids as an alternative anti-microbial therapy. Biofilm 2, 100019 (2020).
[51] A. Z. Nelson, Embedded-Droplet-Printing-Gcode-February-2020. Github. https://github.com/arifnelson/Embedded-Droplet-Printing-Gcode-February-2020. Deposited 20 February 2020.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.