×

Modeling heat transport in nanofluids with stagnation point flow using fractional calculus. (English) Zbl 1480.76006

Summary: This paper studies the flow and heat transfer of power-law type nanofluids with stagnation point flow past a porous sheet. The governing equation of temperature involving spatial fractional derivative is used to investigate the anomalous heat diffusion of nanofluids. Four types of nanoparticles are considered with the carboxymethyl cellulose and water miscible liquids as the heat transfer fluid. By suitable similarity transformations, the governing partial differential equations are reduced to a system of ordinary differential equations, which are discussed thoroughly. It is found that the thermal transfer ability of nanofluids shows inverse correlation with the order of fractional derivative. Effects of the other physical parameters on flow and heat transfer are analyzed in detail.

MSC:

76A05 Non-Newtonian fluids
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Choi, J.; Eastman, S., Enhancing thermal conductivity of fluids with nanoparticles, ASME Publ. Fed., 231, 99-106, (1995)
[2] Eastman, J. A.; Phillpot, S.; Choi, S.; Keblinski, P., Thermal transport in nanofluids, Annu. Rev. Mater. Res., 34, 219-246, (2004)
[3] Keblinski, P.; Eastman, D. G.; Cahill, J. A., Nanofluids for thermal transport, Mater. Today, 8, 6, 36-44, (2005)
[4] Liu, H.; He, J.; Li, Z., Fractional calculus for nanoscale flow and heat transfer, Int. J. Numer. Methods Heat Fluid Flow, 24, 6, 1227-1250, (2014) · Zbl 1356.80018
[5] Ho, C. J.; Chen, M. W.; Li, Z. W., Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity, Int. J. Heat Mass Transf., 51, 17-18, 4506-4516, (2008) · Zbl 1144.80317
[6] Pal, D.; Mandal, G.; Vajravelu, K., Flow and heat transfer of nanofluids at a stagnation point flow over a stretching/shrinking surface in a porous medium with thermal radiation, Appl. Math. Comput., 238, 208-224, (2014) · Zbl 1334.76155
[7] Liu, Z.; Chen, R.; He, J., Active generation of multiple jets for producing nanofibres with high quality and high throughput, Mater. Des., 94, 496-501, (2016)
[8] Kolodziej, J. A.; Mierzwiczak, M.; Ciakowski, M., Power law fluid flow through a bundle of regular fibers, Appl. Math. Model., 39, 21, 6425-6437, (2015) · Zbl 1443.76043
[9] Crochet, M. J.; Davies, A. R.; Walters, K., Numerical Simulation of Non-Newtonian Flow, vol. 1, (2012), Elsevier · Zbl 0583.76002
[10] Sui, J.; Zheng, L.; Zhang, X.; Chen, G., Mixed convection heat transfer in power law fluids over a moving conveyor along an inclined plate, Int. J. Heat Mass Transf., 85, 1023-1033, (2015)
[11] Lin, Y.; Zheng, L.; Chen, G., Unsteady flow and heat transfer of pseudo-plastic nanoliquid in a finite thin film on a stretching surface with variable thermal conductivity and viscous dissipation, Powder Technol., 274, 324-332, (2015)
[12] Karniadakis, G. E.; Hesthaven, J. S.; Podlubny, I., Special issue on fractional PDES: theory, numerics, and applications, J. Comput. Phys., 293, 1-3, (2015) · Zbl 1349.35004
[13] Machado, J. T.; Mainardi, F.; Kiryakova, V., Fractional calculus: quo vadimus? (where are we going?), Fract. Calculus Appl. Anal., 18, 2, 495-526, (2015) · Zbl 1309.26011
[14] Liang, Y.; Ye, A. Q.; Chen, W.; Gatto, R. G.; Colon-Perez, L.; Mareci, T. H.; Magin, R. L., A fractal derivative model for the characterization of anomalous diffusion in magnetic resonance imaging, Commun. Nonlinear Sci. Numer. Simul., 39, 529-537, (2016)
[15] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172, 1, 65-77, (2004) · Zbl 1126.76346
[16] Bufferand, H.; Ciraolo, G.; Ghendrih, P.; Lepri, S.; Livi, R., Particle model for nonlocal heat transport in fusion plasmas, Phys. Rev. E, 87, 2, 1-9, (2013)
[17] Liu, S.; Hanggi, P.; Li, N.; Ren, J.; Li, B., Anomalous heat diffusion, Phys. Rev. Lett., 112, 4, 040601, (2014)
[18] Bobaru, F.; Duangpanya, M., A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities, J. Comput. Phys., 231, 7, 2764-2785, (2012) · Zbl 1253.80002
[19] Oterkus, S.; Madenci, E.; Agwai, A., Peridynamic thermal diffusion, J. Comput. Phys., 265, 71-96, (2014) · Zbl 1349.80020
[20] Povstenko, Y. Z., Theory of thermoelasticity based on the space-time-fractional heat conduction equation, Phys. Scr., T136, 1-6, (2009)
[21] Buongiorno, J., Convective transport in nanofluids, J. Heat Transf., 128, 3, 240, (2006)
[22] Wagner, N. J.; Brady, J. F., Shear thickening in colloidal dispersions, Phys. Today, 62, 10, 27-32, (2009)
[23] Helgeson, M. E.; Porcar, L.; Lopez-Barron, C.; Wagner, N. J., Direct observation of flow-concentration coupling in a shear-banding fluid, Phys. Rev. Lett., 105, 8, 084501, (2010)
[24] Chen, W.; Zhang, J.; Zhang, J., A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures, Fract. Calculus Appl. Anal., 16, 76-92, (2013) · Zbl 1312.76058
[25] Sun, H.; Zhang, Y.; Chen, W.; Reeves, D. M., Use of a variable index fractional derivative model to capture transient dispersion in heterogeneous media, J. Contam. Hydrol., 157, 47-58, (2014)
[26] Zhang, Y.; Benson, D. A.; Reeves, D. M., Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications, Adv. Water Resour., 32, 4, 561-581, (2009)
[27] He, J., A variational theory for one-dimensional unsteady compressible flow—an image plane approach, Appl. Math. Model., 22, 6, 395-403, (1998) · Zbl 1428.76165
[28] Lenzi, E.; Mendes, R.; Goncalves, G.; Lenzi, M.; Da Silva, L., Fractional diffusion equation and Green function approach: exact solutions, Phys. A: Stat. Mech. Appl., 360, 2, 215-226, (2006)
[29] Zahmatkesh, I.; Alishahi, M. M.; Emdad, H., New velocity-slip and temperature-jump boundary conditions for Navier-Stokes computation of gas mixture flows in microgeometries, Mech. Res. Commun., 38, 6, 417-424, (2011) · Zbl 1272.76204
[30] Bachok, N.; Ishak, A.; Pop, I., Boundary layer stagnation-point flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid, Int. J. Heat Mass Transf., 55, 25-26, 8122-8128, (2012)
[31] Zhang, C.; Zheng, L.; Zhang, X.; Chen, G., MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction, Appl. Math. Model., 39, 1, 165-181, (2015) · Zbl 1428.76240
[32] Ovler, P., Applications of Lie Groups to Differential Equations, (1993), Springer-Verlag New York · Zbl 0785.58003
[33] Costa, F. S.; Maro, J. A.P. F.; Soares, J. C.A.; de Oliveira, E. C., Similarity solution to fractional nonlinear space-time diffusion-wave equation, J. Math. Phys., 56, 3, 033507, (2015) · Zbl 1507.35318
[34] Asaithambi, A., Solution of the Falkner-Skan equation by recursive evaluation of Taylor coefficients, J. Comput. Appl. Math., 176, 1, 203-214, (2005) · Zbl 1063.65065
[35] Pedas, A.; Tamme, E., Piecewise polynomial collocation for linear boundary value problems of fractional differential equations, J. Comput. Appl. Math., 236, 13, 3349-3359, (2012) · Zbl 1245.65104
[36] Stynes, M.; Gracia, J. L., A finite difference method for a two-point boundary value problem with a Caputo fractional derivative, IMA J. Numer. Anal., 35, 2, 698-721, (2014) · Zbl 1339.65097
[37] Gracia, J. L.; Stynes, M., Central difference approximation of convection in Caputo fractional derivative two-point boundary value problems, J. Comput. Appl. Math., 273, 103-115, (2015) · Zbl 1295.65081
[38] Turkyilmazoglu, M., Nanofluid flow and heat transfer due to a rotating disk, Comput. Fluids, 94, 139-146, (2014) · Zbl 1391.76811
[39] Tarasov, V. E., Heat transfer in fractal materials, Int. J. Heat Mass Transf., 93, 427-430, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.