×

Similarity solution to fractional nonlinear space-time diffusion-wave equation. (English) Zbl 1507.35318

Summary: In this article, the so-called fractional nonlinear space-time wave-diffusion equation is presented and discussed. This equation is solved by the similarity method using fractional derivatives in the Caputo, Riesz-Feller, and Riesz senses. Some particular cases are presented and the corresponding solutions are shown by means of 2-D and 3-D plots.{
©2015 American Institute of Physics}

MSC:

35R11 Fractional partial differential equations
35K55 Nonlinear parabolic equations
35K57 Reaction-diffusion equations
60J60 Diffusion processes
26A33 Fractional derivatives and integrals

Software:

BVPh
Full Text: DOI

References:

[1] Debnath, L.; Bhatta, D., Integral Transform and Their Applications (2007)
[2] Garabedian, P. R., Partial Differential Equations (1998) · Zbl 0913.35001
[3] Zwillinger, D., Handbook of Differential Equations (1992) · Zbl 0741.34002
[4] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method, 60 (1994) · Zbl 0802.65122
[5] Cheniguel, A., Numerical method for solving wave equation with non local boundary conditions (2013)
[6] Somali, S.; Gokmen, G., Adomian decomposition method for nonlinear Sturm-Liouville problems, Surv. Math. Its Appl., 2, 11-20 (2007) · Zbl 1132.34333
[7] Lin, Yinwei; Lu, Tzon-Tzer; Chen, Cha’o-Kuang, Adomian decomposition method using integrating factor, Commun. Theor. Phys., 60, 159-164 (2013) · Zbl 1284.65093 · doi:10.1088/0253-6102/60/2/03
[8] Liao, S. J., Beyond Perturbation - Introduction to the Homotopy Analysis Method (2004) · Zbl 1051.76001
[9] Zhao, Y.; Lin, Z.; Liao, S. J., A modified homotopy analysis method for solving boundary layer equations, Appl. Math., 4, 11-15 (2013) · doi:10.4236/am.2013.41003
[10] Liao, S. J., Homotopy Analysis Method in Nonlinear Differential Equation (2012) · Zbl 1253.35001
[11] He, J. H., Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178, 257-262 (1999) · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[12] Chen, X.; Zheng, L.; Zhang, X., Convergence of the homotopy decomposition method for solving nonlinear equations, Adv. Dyn. Syst. Appl., 2, 59-64 (2007) · Zbl 1147.65050
[13] Olver, P. J., Application of Lie Groups to Differential Equations (1986) · Zbl 0588.22001
[14] Hossen, M. A., Applications of scaling group of transformation on boundary layer flow and mass transfer over a stretching sheet embedded in a porous medium, J. Phys. Sci., 15, 129-137 (2011)
[15] Ismoen, M.; Kandasamy, R.; Abdul Kahar, R., Scaling group transformation for boundary-layer flow of a nanofluid past a porous vertical stretching surface in the presence of chemical reaction with heat radiation, Comput. Fluids, 52, 15-21 (2011) · Zbl 1271.76282 · doi:10.1016/j.compfluid.2011.08.003
[16] Buckwar, E.; Luchko, Y., Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, J. Math. Anal. Appl., 227, 81-97 (1998) · Zbl 0932.58038 · doi:10.1006/jmaa.1998.6078
[17] Pakdemirli, M.; Yurusoy, M., Similarity transformations for partial differential equations, SIAM Rev., 40, 96-101 (1998) · Zbl 0911.35096 · doi:10.1137/S003614459631001X
[18] Djordjevic, V. D.; Atanackovic, T. M., Similarity solutions to nonlinear heat conduction and Burgers/Korteweg-de Vries fractional equations, J. Comput. Appl. Math., 222, 701-714 (2008) · Zbl 1157.35470 · doi:10.1016/j.cam.2007.12.013
[19] Debnath, L., Applications of fractional integral and differential equations in fluid mechanics, Fract. Calc. Appl. Anal., 6, 119-155 (2003) · Zbl 1076.35095
[20] Tarasov, V. E., Fractional Dynamics, Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (2010) · Zbl 1214.81004
[21] Magin, R. L., Fractional calculus models of complex dynamics in biological tissues, J. Comput. Math. Appl., 59, 1586-1593 (2010) · Zbl 1189.92007 · doi:10.1016/j.camwa.2009.08.039
[22] Rihan, F. A., Numerical modeling of fractional-order biological systems, Abstr. Appl. Anal., 2013, 816803 · Zbl 1470.65131 · doi:10.1155/2013/816803
[23] Mainardi, F., Fractional Calculus and Wave in Linear Viscoelasticity (2010) · Zbl 1210.26004
[24] Mainardi, F.; Mura, A.; Pagnini, G., The M-Wright function in time-fractional diffusion processes: A tutorial survey, Int. J. Differ. Equations, 2010, 104505 · Zbl 1222.60060 · doi:10.1155/2010/104505
[25] Capelas de Oliveira, E.; Vaz, J. Jr.; Costa, F. S., The fractional Schrödinger equation for delta potential, J. Math. Phys., 51, 123517 (2010) · Zbl 1314.81082 · doi:10.1063/1.3525976
[26] Costa, F. S.; Capelas de Oliveira, E., Fractional wave-diffusion equation with periodic conditions, J. Math. Phys., 53, 123520 (2012) · Zbl 1278.35260 · doi:10.1063/1.4769270
[27] de Oliveira, E. Capelas; Mainardi, F.; Vaz, J. Jr., Fractional models of anomalous relaxation based on the Kilbas & Saigo function, Meccanica, 49, 2049-2060 (2014) · Zbl 1307.34007 · doi:10.1007/s11012-014-9930-0
[28] Lenzi, E. K.; Ribeiro, H. V.; dos Santos, M. A. F.; Rossato, R.; Mendes, R. S., Time dependent solutions for a fractional Schrödinger equation with delta potentials, J. Math. Phys., 54, 082107 (2013) · Zbl 1284.81118 · doi:10.1063/1.4819253
[29] Feller, W., On a generalization of marcel riesz’ potential and the semigroups generated by them, 73-81 · Zbl 0048.08503
[30] Gorenflo, R.; Mainardi, F., Random walk models for space-fractional diffusion process, Funct. Calc. Appl. Anal., 1, 167-191 (1998) · Zbl 0946.60039
[31] Mainardi, F.; Luchko, Y.; Pagnini, G., The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal., 2, 153-192 (2001) · Zbl 1054.35156
[32] Riesz, M., L’integrale de Riemann-Liouville et le probleme de Cauchy, Acta Math., 81, 1-223 (1949) · Zbl 0033.27601 · doi:10.1007/BF02395016
[33] Paradisi, P.; Cesari, R.; Mainardi, F.; Maurizi, A.; Tampieri, F., A generalized Fick’s law to describe non-local transport effects, Phys. Chem. Earth, 26, 275-279 (2001) · doi:10.1016/S1464-1909(01)00006-5
[34] Capelas de Oliveira, E.; Mainardi, F.; Vaz, J. Jr., Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics, Eur. Phys. J. Spec. Top., 193, 161-171 (2011) · doi:10.1140/epjst/e2011-01388-0
[35] Garra, R.; Giusti, A.; Mainardi, F.; Pagnini, G., Fractional relaxation with time-varying coefficient, Fract. Calc. Appl. Anal., 17, 424-439 (2014) · Zbl 1305.26018 · doi:10.2478/s13540-014-0178-0
[36] Mendes, G. A.; Lenzi, E. K.; Mendes, R. S.; da Silva, L. R., Anisotropic fractional diffusion equation, Phys. A, 346, 271-283 (2005) · doi:10.1016/j.physa.2004.07.033
[37] da Silva, L. R.; Lucena, L. S.; Lenzi, E. K.; Mendes, R. S.; Sau Fa, K., Fractional and nonlinear diffusion equation: Additional results, Phys. A, 344, 671-676 (2004) · Zbl 1071.35063 · doi:10.1016/j.physa.2004.06.050
[38] Ren, F. Y.; Liang, J. R.; Qiu, W. Y.; Xiao, J. B., Asymptotic behavior of a fractional Fokker-Planck-type equation, Phys. A, 373, 165-173 (2007) · doi:10.1016/j.physa.2006.05.045
[39] Vázquez, J. L., smoothing and decay estimates for non-linear diffusion equation, 33 (2006) · Zbl 1113.35004
[40] Vázquez, J. L., The Porous Medium Equation (2007) · Zbl 1107.35003
[41] Vázquez, J. L., Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type, J. Eur. Math. Soc., 16, 769-803 (2014) · Zbl 1297.35279 · doi:10.4171/JEMS/446
[42] Podlubny, I., Fractional Differential Equations, 198 (1999) · Zbl 0918.34010
[43] Sabatier, J., Advances in fractional calculus, Theoretical Developments and Applications in Physics and Engineering (2007) · Zbl 1116.00014
[44] Luchko, Yu.; Mainardi, F., Cauchy and signaling problems for the time-fractional diffusion-wave equation, ASME J. Vib. Acoustic, 136, 051008-1-051008-7 (2014)
[45] Gorenflo, R.; Luchko, Yu; Mainardi, F., Wright functions as scale-invariant solutions of the diffusion-wave equation, J. Comput. Appl. Math., 118, 175-191 (2000) · Zbl 0973.35012 · doi:10.1016/S0377-0427(00)00288-0
[46] Grigoriev, Yu. N.; Meleshko, S. V., Group analysis of kinetic equations, Russ. J. Numer. Anal. Math. Model., 10, 425-447 (1995) · Zbl 0838.35101 · doi:10.1515/rnam.1995.10.5.425
[47] Ibragimov, N. H., CRC Handbook of Lie Group Analysis of Differential Equations, 2 (1995) · Zbl 0864.35002
[48] Dorodnitsyn, V., Application of Lie Groups to Difference Equations (2010)
[49] Kober, H., On fractional integrals and derivatives, Q. J. Math., 11, 193-211 (1940) · Zbl 0025.18502 · doi:10.1093/qmath/os-11.1.193
[50] Erdélyi, A., On fractional integration and its application to the theory of hankel transforms, Q. J. Math., 11, 293-303 (1940) · Zbl 0025.18602 · doi:10.1093/qmath/os-11.1.293
[51] Polubarinova-Kochina, P. Ya., Theory of Groundwater Movement (1962) · Zbl 0114.42601
[52] Plociniczak, L.; Okrasińska, H., Approximate self-similar solutions to a nonlinear diffusion equation with time-fractional derivative, Physica D, 261, 85-91 (2013) · Zbl 1286.35060 · doi:10.1016/j.physd.2013.07.006
[53] Silva Costa, F., Alves Soares, J. C., and Capelas de Oliveira, E., “Green’s function associated with the diffusion-wave equation” (unpublished). · Zbl 1507.35318
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.