×

Jacobi-Trudi type formula for a class of irreducible representations of \(\mathfrak{gl}(m\mid n)\). (English) Zbl 1492.17007

The Jacobi-Trudi formula expresses the Schur functions using the elementary symmetric functions or the complete symmetric functions. Alternatively, one can interpret this formula as an expression for the irreducible characters for finite-dimensional representations of the general linear group in terms of the characters of the symmetric tensor representations.
In this paper the author gives a similar expression for a certain class of finite-dimensional irreducible representations of the general linear Lie superalgebra \(\mathfrak{gl}(m|n)\). Namely, it expresses the characters of these representations using the characters of the symmetric powers of the fundamental representation and their duals. The modules considered in this paper correspond to finite-dimensional irreducible representations with highest weight of the form \[ \lambda=(\alpha_1,\alpha_2, \dots, \alpha_m; -k, -k, \dots, -k) \] such that \(0\leq k \leq m\) and \(\alpha_{m-k} \geq 0 \geq \alpha_{m-k+1}\).
The main theorem of this paper is a special case of Theorem 4.3 in [E. M. Moens and J. Van der Jeugt, J. Phys. A, Math. Gen. 37, No. 50, 12019–12039 (2004; Zbl 1077.17010)]. However, according to Lemma 1.14 in [E. M. Moens, Supersymmetric Schur functions and Lie superalgebra representations. Ghent University (Ph.D. Thesis) (2006; doi:1854/11331] there is a gap in the proof. Therefore the more general theorem is still considered a conjecture.

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B20 Simple, semisimple, reductive (super)algebras

Citations:

Zbl 1077.17010

References:

[1] Balantekin, A. B. and Bars, I., Dimension and character formulas for lie supergrous,J. Math. Phys.2 (1981) 1149-1162. · Zbl 0469.22017
[2] Balantekin, A. B. and Bars, I., Representation of supergrous,J. Math. Phys.2 (1981) 1810-1818. · Zbl 0547.22014
[3] Berele, A. and Regev, A., Hook Young diagrams with applications to combinatorics and to representation of Lie algebras,Adv. Math.64 (1987) 118-175. · Zbl 0617.17002
[4] Binh, N. L. T., Dung, N. T. P. and Hai, P. H., Jacobi-Trudi type formula for character of irreducible representations of \(\mathfrak{g}\mathfrak{l}(m|1)\),Acta Math. Vietnam.44(3) (2019) 603-615. · Zbl 1473.17021
[5] Brundan, J., Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra \(\mathfrak{g}\mathfrak{l}(m|m)\),J. Amer. Math. Soc.16 (2002) 185-231. · Zbl 1050.17004
[6] Cummins, C. J. and King, R. C., Composite Young diagrams, supercharacters of \(U(M/N)\) and modification rules,J. Phys. A20(11) (1987) 3121-3133. · Zbl 0645.17002
[7] Dondi, P. H. and Jarvis, P. D., Diagram and superfild techniques in the classical superalgebras,J. Phys. A14 (1981) 547-563. · Zbl 0449.17002
[8] Dung, N. T. P., Double Koszul complex and construction of irreducible representations of \(\mathfrak{g}\mathfrak{l}(3|1)\),Proc. Amer. Math. Soc.138(11) (2010) 3783-3796. · Zbl 1223.17013
[9] Dung, N. T. P. and Hai, P. H., Irreducible representations of quantum linear groups of type \(A_{1 | 0}\),J. Algebra282(2) (2004) 809-830. · Zbl 1148.16303
[10] Dung, N. T. P., Hai, P. H. and Hung, N. H., Construction of irreducible representations of the quantum super group \(G L_q(3|1)\),Acta Math. Vietnam.36(2) (2011) 215-229. · Zbl 1254.17014
[11] Kac, V. G., Classification of simple Lie superalgebras,Funct. Anal. Appl.9 (1975) 263-265. · Zbl 0331.17001
[12] Kac, V. G., Lie superalgebras,Adv. Math.26 (1977) 8-96. · Zbl 0366.17012
[13] Kac, V. G., Character of typical representations of classical Lie superalgebras,Commun. Algebra5 (1977) 889-897. · Zbl 0359.17010
[14] Kac, V. G., Representations of classical Lie superalgebras,Lect. Notes Math.676 (1978) 597-626. · Zbl 0388.17002
[15] Macdonald, I. G., Symmetric Function and the Hall Polynomials (Oxford University Press, New York, 1979). · Zbl 0487.20007
[16] E. M. Moens, Supersymmetric Schur functions and Lie superalgebra representations, Ph.D. thesis, University of Gent (2006).
[17] Moens, E. M. and van der Jeugt, J., A detrminantal fomula for super-symmetric schur polynomials, J. Algebr. Comb.17(3) (2003) 283-307. · Zbl 1020.05070
[18] Moens, E. M. and van der Jeugt, J., On dimension formulas for \(\mathfrak{g}\mathfrak{l}(m|n)\) representations, J. Lie Theory14(2) (2004) 523-535. · Zbl 1085.17007
[19] Moens, E. M. and van der Jeugt, J., On characters and dimension fomulas for representation of the Lie superalgebra \(\mathfrak{g}\mathfrak{l}(m|n)\), in Lie Theory and its Applications in Physics V, eds. Doebner, H.-D. and Dobrev, V. K. (World Scientific Publishing, Singapore, 2004), pp. 64-73. · Zbl 1229.17005
[20] Moens, E. M. and van der Jeugt, J., A character formula for atypical critical \(\mathfrak{g}\mathfrak{l}(m|n)\) representations labeled by composite partitions, J. Phys. A \(:\) Math. Gen.37(2) (2004) 523-535. · Zbl 1085.17007
[21] Moens, E. M. and van der Jeugt, J., Composite super-symmetric \(S\)-functions and character of \(\mathfrak{g}\mathfrak{l}(m|n)\) representations, in Proc. VI Int. Worshop on Lie Theory and its Applications in Physics, eds. Doebner, H.-D. and Dobrev, V. K. (Heron Press, Sofia, 2006), pp. 251-268. · Zbl 1342.17004
[22] Su, Y. and Zhang, R. B., Character and dimension formula for general linear superalgebra,Adv. Math.211 (2007) 1-33. · Zbl 1166.17002
[23] van der Jeugt, J., Hughes, J. W. B., King, R. C. and Thierry-Mieg, J., Character fomulas for irreducible modules of the Lie superalgebra \(\mathfrak{g}\mathfrak{l}(m|n)\), J. Math. Phys.31(1) (1990) 2278-2304. · Zbl 0725.17004
[24] van der Jeugt, J., Hughes, J. W. B., King, R. C. and Thierry-Mieg, J., Character fomulas for irreducible modules of the Lie superalgebra \(\mathfrak{s}\mathfrak{l}(m|n)\), J. Math. Phys.31(1) (1990) 2278-2304. · Zbl 0725.17004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.