×

Jacobi-Trudi type formula for character of irreducible representations of \(\mathfrak{gl}(m|1)\). (English) Zbl 1473.17021

The classical Jacobi-Trudi formula computes Schur symmetric functions in terms of the elementary (resp. complete) symmetric functions. Since these symmetric functions can be realized as irreducible characters of general linear Lie algebras,
In this paper, the authors extend this famous formula to the case of the general linear Lie superalgebras. According to V. Kac, irreducible (finite dimensional) representations of the general linear Lie superalgebra \(gl(m|n)\) are determined by means of dominant weights. They prove a determinantal type formula to compute the irreducible characters of the general Lie superalgebra \(gl(m|1)\) in terms of the characters of the symmetric powers of the fundamental representation and their duals. This formula was conjectured by J. van der Jeugt and E. Moens for the Lie superalgebra \(gl(m|n)\) and generalizes the well-known Jacobi-Trudi formula.

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B15 Representations of Lie algebras and Lie superalgebras, analytic theory
17B20 Simple, semisimple, reductive (super)algebras
17B22 Root systems

References:

[1] Berele, A., Regev, A.: Hook Young diagrams with applications to combinatorics and to representation of Lie superalgebras. Adv. Math. 64(2), 118-175 (1987) · Zbl 0617.17002 · doi:10.1016/0001-8708(87)90007-7
[2] Brundan, J.: Kazhdan-lusztig polynomials and character formulae for the Lie superalgebra 𝔤𝔩(m|n)\( \mathfrak{gl}(m|n)\). J. Am. Math. Soc. 16(1), 185-231 (2003) · Zbl 1050.17004 · doi:10.1090/S0894-0347-02-00408-3
[3] Balantekin, A.B., Bars, I.: Dimension and character formulas for Lie supergrous. J. Math. Phys. 22(6), 1149-1162 (1981) · Zbl 0469.22017 · doi:10.1063/1.525038
[4] Balantekin, A.B., Bars, I.: Representation of supergrous. J. Math. Phys. 22 (8), 1810-1818 (1981) · Zbl 0547.22014 · doi:10.1063/1.525127
[5] Cummins, C.J., King, R.C.: Composite Young diagrams, supercharacters of U(M/N) and modification rules. J. Phys. A 20(11), 3121-3133 (1987) · Zbl 0645.17002 · doi:10.1088/0305-4470/20/11/018
[6] Dondi, P.H., Jarvis, P.D.: Diagram and superfield techniques in the classical superalgebras. J. Phys. A 14(3), 547-563 (1981) · Zbl 0449.17002 · doi:10.1088/0305-4470/14/3/005
[7] Dung, N.T.P., Hai, P.H., Hung, N.H.: Construction of irreducible representations of the quantum super group GLq(3|1). Acta. Math. Vietnam. 36(2), 215-229 (2011) · Zbl 1254.17014
[8] Dung, N.T.P.: Double Koszul complex and construction of irreducible representations of 𝔤𝔩 \((3|1) \mathfrak{gl}(3|1)\). Proc. Am. Math. Soc. 138(11), 3783-3796 (2010) · Zbl 1223.17013 · doi:10.1090/S0002-9939-2010-10400-8
[9] Dung, N.T.P., Hai, P.H.: Irreducible representations of quantum linear groups of type a1|0. J. Algebra 282(2), 809-830 (2004) · Zbl 1148.16303 · doi:10.1016/j.jalgebra.2004.08.008
[10] Hughes, J.W.B., King, R.C., Van der Jeugt, J.: On the composition factors of Kac modules for the Lie superalgebras 𝔰𝔩(𝔪/𝔫)\( \frak{sl(m/n)} \). J. Math. Phys. 33(2), 470-491 (1992) · Zbl 0747.17003 · doi:10.1063/1.529782
[11] Kac, V.G.: Classification of simple Lie superalgebras. Funct. Anal. Appl. 9(3), 91-92 (1975) · Zbl 0331.17001
[12] Kac, V.G.: Lie superalgebras. Adv. Math. 26(1), 8-96 (1977) · Zbl 0366.17012 · doi:10.1016/0001-8708(77)90017-2
[13] Kac, V.G.: Character of typical representations of classical Lie superalgebras. Comm. Algebra 5(8), 889-897 (1977) · Zbl 0359.17010 · doi:10.1080/00927877708822201
[14] Kac, V.G.: Representations of Classical Lie Superalgebras. In: Lecture Notes in Math, vol. 676, pp. 597-626. Springer, Berlin (1978) · Zbl 0388.17002
[15] Macdonald, I.G.: Symmetric Function and Hall Polynomials. Oxford University Press, New York (1979) · Zbl 0487.20007
[16] Moens, E.M., Van der Jeugt, J.: A determinantal fomula for supersymmetric Schur polynomials. J. Algebraic Combin. 17(3), 283-307 (2003) · Zbl 1020.05070 · doi:10.1023/A:1025048821756
[17] Moens, E.M., Van der Jeugt, J.: On dimension formulas for 𝔤𝔩(m|n)\( \mathfrak{gl}(m|n)\) representations. J. Lie Theory 14(2), 523-535 (2004) · Zbl 1085.17007
[18] Moens, E.M., Van der Jeugt, J.: On characters and dimension fomulas for representations of the Lie superalgebra 𝔤𝔩(m|n)\( \mathfrak{gl}(m|n). In\): Doebner, H.-D., Dobrev, V.K. (eds.) Lie Theory and its Applications in Physics V, pp. 64-73. World Sci. Publ., River Edge (2004) · Zbl 1229.17005
[19] Moens, E.M., Van der Jeugt, J.: A character formula for atypical critical 𝔤𝔩(m|n)\( \mathfrak{gl}(m|n)\) representations labelled by composite partitions. J. Phys. A 37(50), 12019-12039 (2004) · Zbl 1077.17010 · doi:10.1088/0305-4470/37/50/006
[20] Moens, E.M., Van der Jeugt, J.: Composite super-symmetric S-functions and character of 𝔤𝔩(m|n)\( \mathfrak{gl}(m|n)\) representations. In: Doebner, H.-D., Dobrev, V.K. (eds.) Proceedings of the VI International Worshop on Lie Theory and its Applications in Physics, pp. 251-268. Heron Press Ltd, Sofia (2006) · Zbl 1342.17004
[21] Moens, E.M.: Supersymmetric Schur Functions and Lie Superalgebra Representations. University of Gent, Ph.D. thesis (2006)
[22] Su, Y., Zhang, R.B.: Character and dimension formulae for general linear superalgebra. Adv. Math. 211(1), 1-33 (2007) · Zbl 1166.17002 · doi:10.1016/j.aim.2006.07.010
[23] Van der Jeugt, J., Hughes, J.W.B., King, R.C., Thierry-Mieg, J.: Character formulas for irreducible modules of the Lie superalgebras 𝔰𝔩(m/n)\( \mathfrak{sl}(m/n)\). J. Math. Phys. 31(9), 2278-2304 (1990) · Zbl 0725.17004 · doi:10.1063/1.528637
[24] Van der Jeugt, J., Hughes, J.W.B., King, R.C., Thierry-Mieg, J.: A character fomula for singly atypical modules of the Lie superalgebra 𝔰𝔩(m/n)\( \mathfrak{sl}(m/n)\). Comm. Algebra 18(10), 3453-3480 (1990) · Zbl 0721.17003 · doi:10.1080/00927879008824086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.