×

Non-symmetric flow over a stretching/shrinking surface with mass transfer. (English) Zbl 07868785

Summary: The non-symmetric flow over a stretching/shrinking surface in an otherwise quiescent fluid is considered under the assumption that the surface can stretch or shrink in one direction and stretch in a direction perpendicular to this. The problem is reduced to similarity form, being described by two dimensionless parameters, \(\gamma\) the relative stretching/shrinking rate and \(S\) characterizing the fluid transfer through the boundary. Numerical solutions are obtained for representative values of \(\gamma\) and \(S\), a feature of which are the existence of critical values \(\gamma_c\) of \(\gamma\) dependent on \(S\), these being determined numerically. Asymptotic forms for large \(\gamma\) and \(S\), for both fluid withdrawal, \(S>0\) and injection \(S<0\) are obtained and compared with the corresponding numerical results.

MSC:

34B15 Nonlinear boundary value problems for ordinary differential equations
65L07 Numerical investigation of stability of solutions to ordinary differential equations
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics

Software:

bvp4c
Full Text: DOI

References:

[1] NAG: Numerical Algorithm Group. Available from Internet: https://www.nag. co.uk.
[2] M.E. Ali. On thermal boundary layer on a power-law stretched surface with suction or injection. Int. J. Heat Fluid Flow, 16(4):280-290, 1995. https://doi.org/10.1016/0142-727X(95)00001-7. · doi:10.1016/0142-727X(95)00001-7
[3] P.D. Ariel. Generalized three-dimensional flow due to a stretch-ing sheet. J. App. Math. Mech. (ZAMM), 83(12):844-852, 2003. https://doi.org/10.1002/zamm.200310052. · Zbl 1047.76019 · doi:10.1002/zamm.200310052
[4] W.H.H. Banks. Similarity solutions of the boundary-layer equations for a stretch-ing wall. J. Theor. Appl. Mech., 2:375-392, 1983. · Zbl 0538.76039
[5] R.C. Bataller. Similarity solutions for flow and heat transfer of a quiescent fluid over a nonlinearly stretching surface. J. Mater. Processing Tech., 203(1-3):176-183, 2008. https://doi.org/10.1016/j.jmatprotec.2007.09.055. · doi:10.1016/j.jmatprotec.2007.09.055
[6] C.K. Chen and M.I. Char. Heat transfer of a continuous, stretching sur-face with suction or blowing. J. Math. Anal. Appl., 135(2):568-580, 1988. https://doi.org/10.1016/0022-247X(88)90172-2. · Zbl 0652.76062 · doi:10.1016/0022-247X(88)90172-2
[7] R. Cortell. Viscous flow and heat transfer over a nonlinearly stretching surface. Appl. Math. Computation, 184(2):864-873, 2007. https://doi.org/10.1016/j.amc.2006.06.077. · Zbl 1112.76022 · doi:10.1016/j.amc.2006.06.077
[8] L.J. Crane. Flow past a stretching plate. J. Appl. Math. Phys. (ZAMP), 21(4):645-647, 1970. https://doi.org/10.1007/BF01587695. · doi:10.1007/BF01587695
[9] T. Fang. Boundary layer flow over a shrinking sheet with power-law velocity. Int J. Heat Mass Transfer, 51(25-26):5838-5843, 2008. https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.067. · Zbl 1157.76010 · doi:10.1016/j.ijheatmasstransfer.2008.04.067
[10] T.G. Fang, J. Zhang and S.S. Yao. Viscous flow over an unsteady shrinking sheet with mass transfer. Chin. Phys. Lett., 26:014703, 2009. https://doi.org/10.1088/0256-307X/26/1/014703. · doi:10.1088/0256-307X/26/1/014703
[11] E.G. Fisher. Extrusion of Plastics. Wiley, New York, 1976.
[12] S. Goldstein. On backward boundary layers and flow in converging passages. J. Fluid Mech., 21(1):33-45, 1965. https://doi.org/10.1017/S0022112065000034. · Zbl 0125.43303 · doi:10.1017/S0022112065000034
[13] P.S. Gupta and A.S. Gupta. Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng., 55(6):744-746, 1977. https://doi.org/10.1002/cjce.5450550619. · doi:10.1002/cjce.5450550619
[14] A. Ishak, R. Nazar and I. Pop. Hydromagnetic flow and heat transfer ad-jacent to a stretching vertical sheet. Heat Mass Transfer, 44:921-927, 2008. https://doi.org/10.1007/s00231-007-0322-z. · doi:10.1007/s00231-007-0322-z
[15] S.J. Liao. A new branch of solutions of boundary-layer flows over an imperme-able stretched plate. Int. J. Heat and Mass Transfer, 48(12):2529-2539, 2005. https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.005. · Zbl 1189.76142 · doi:10.1016/j.ijheatmasstransfer.2005.01.005
[16] S.J. Liao and I. Pop. Explicit analytic solution for similarity bound-ary layer equations. Int. J. Heat Mass Transfer, 47(1):75-85, 2004. https://doi.org/10.1016/S0017-9310(03)00405-8. · Zbl 1045.76008 · doi:10.1016/S0017-9310(03)00405-8
[17] Y.Y. Lok, J.H. Merkin and I. Pop. Axisymmetric rotational stagna-tion point flow impinging on a permeable stretching/shrinking rotating disk. Eur. J. Mech. B/Fluids, 72(November-December):275-292, 2018. https://doi.org/10.1016/j.euromechflu.2018.05.013. · Zbl 1408.76146 · doi:10.1016/j.euromechflu.2018.05.013
[18] E. Magyari and B. Keller. Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls. Eur. J. Mech. B/Fluids, 19(1):109-122, 2000. https://doi.org/10.1016/S0997-7546(00)00104-7. · Zbl 0976.76021 · doi:10.1016/S0997-7546(00)00104-7
[19] E. Magyari and P.Weidman. New solutions of the Navier-Stokes equations as-sociated with flow above moving boundaries. Acta Mech., 228(10):3725-3733, 2017. https://doi.org/10.1007/s00707-017-1919-z. · Zbl 1394.76041 · doi:10.1007/s00707-017-1919-z
[20] J.B. McLeod and K.R. Rajagopal. On the uniqueness of flow of a Navier-Stokes fluid due to a stretching boundary. Arch. Ration. Mech. Anal., 98:385-393, 1987. https://doi.org/10.1007/BF00276915. · Zbl 0631.76021 · doi:10.1007/BF00276915
[21] J.H. Merkin. On dual solutions occurring in mixed convec-tion in a porous medium. J. Engng Math., 20:171-179, 1986. https://doi.org/10.1007/BF00042775. · Zbl 0597.76081 · doi:10.1007/BF00042775
[22] J.H. Merkin and T. Mahmood. Mixed convection boundary layer similarity solutions: prescribed wall heat flux. J. Applied Math. Physics (ZAMP), 40:51-68, 1989. https://doi.org/10.1007/BF00945309. · Zbl 0667.76126 · doi:10.1007/BF00945309
[23] J.H. Merkin and I. Pop. Natural convection boundary-layer flow in a porous medium with temperature-dependent boundary conditions. Transp. Porous Me-dia, 85:397-414, 2010. https://doi.org/10.1007/s11242-010-9569-9. · doi:10.1007/s11242-010-9569-9
[24] M. Miklavčič and C.Y. Wang. Viscous flow due to a shrinking sheet. Quart. Appl. Math., 64:283-290, 2006. · Zbl 1169.76018
[25] M. Sajid, N. Ali, Z. Abbas and T. Javed. Stretching flows with general slip boundary condition. Int. J. Mod. Phys. B., 24(30):5939-5947, 2010. https://doi.org/10.1142/S0217979210055512. · Zbl 1454.76034 · doi:10.1142/S0217979210055512
[26] L.F. Shampine, I. Gladwell and S. Thompson. Solving ODEs with Matlab. Cam-bridge University Press, Cambridge, 2003. · Zbl 1079.65144
[27] K. Vajravelu. Flow and heat transfer in a saturated porous medium over a stretching surface. J. App. Math. Mech. (ZAMM), 74(12):605-614, 1994. https://doi.org/10.1002/zamm.19940741209. · Zbl 0821.76078 · doi:10.1002/zamm.19940741209
[28] C.Y. Wang. The three-dimensional flow due to a stretching flat surface. Phys. Fluids, 27(8):1915-1917, 1984. https://doi.org/10.1063/1.864868. · Zbl 0545.76033 · doi:10.1063/1.864868
[29] C.Y. Wang. Review of similarity stretching exact solutions of the Navier-Stokes equations. Eur. J. Mech. B/Fluids, 30(5):475-479, 2011. https://doi.org/10.1016/j.euromechflu.2011.05.006. · Zbl 1258.76061 · doi:10.1016/j.euromechflu.2011.05.006
[30] C.Y. Wang. Uniform flow over a bi-axial stretching surface. J. Fluids Engng., 137:084502, 2015. https://doi.org/10.1115/1.4029447. · doi:10.1115/1.4029447
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.