×

Boundary layer similarity flow driven by power-law shear. (English) Zbl 0886.76026

Similarity solution of the Prandtl boundary layer equations describing wall-bounded flows and symmetric free-shear flows driven by rotational velocities \(U(y)= \beta y^\alpha\) are determined for a range of exponents \(\alpha\) and amplitudes \(\beta\).

MSC:

76D10 Boundary-layer theory, separation and reattachment, higher-order effects
Full Text: DOI

References:

[1] Goldstein, S.: Concerning some solutions of the boundary layer equations in hydrodynamics. Proc. Cambridge Phil. Soc.,XXVI, Part 1, 1-30 (1930). · JFM 56.1260.02 · doi:10.1017/S0305004100014997
[2] Nikuradse, J.: Gesetzm??igkeiten der turbulenten Str?mung in glatten Rohren. VDI Forschungsheft No. 356 (1932). · JFM 58.1311.01
[3] Barenblatt, G. I.: Scaling laws for fully developed turbulent shear flows. Part 1. Basic hypotheses and analysis. J. Fluid Mech.248, 513-520 (1993). · Zbl 0772.76026 · doi:10.1017/S0022112093000874
[4] Barenblatt, G. I., Prostokishin, V. M.: Scaling laws for fully developed turbulent shear flows. Part 2. Processing of experimental data. J. Fluid Mech.248, 521-529 (1993). · Zbl 0772.76027 · doi:10.1017/S0022112093000886
[5] Rosenhead, L.: Laminar boundary layers, Oxford: Clarendon Press 1963. · Zbl 0115.20705
[6] Banks, W. H. H.: Similarity solutions of the boundary-layer equations for a stretching wall. J. Mech. Theor. Appl.2, 375-392 (1983). · Zbl 0538.76039
[7] Riley, N., Weidman, P. D.: Multiple solutions of the Falkner-Skan equation for flow past a stretching boundary. SIAM J. Appl. Math.49, 1350-1358 (1989). · Zbl 0682.76026 · doi:10.1137/0149081
[8] Burde, G. I.: A class of solutions of the boundary layer equations. Izv. Akad. Nauk USSR Mek. Zhid. Gaza2, 45-51 (1990). · Zbl 0707.11046
[9] Weidman, P. D., Amberg, M. J.: Similarity solutions for steady laminar convection along heated plates with variable oblique suction: Newtonian and Darcian fluid flow. Q.J. Mech. Appl. Math. (submitted). · Zbl 0873.76078
[10] Wang, C. Y.: The boundary layers due to shear flow over a still fluid. Phys. FluidsA 4, 1304-1306 (1992). · Zbl 0766.76019 · doi:10.1063/1.858248
[11] Higuera, F. J., Weidman, P. D.: Natural convection beneath a downward facing heated plate in a porous medium. Int. J. Heat Mass Transfer (in press). · Zbl 0861.76083
[12] Ablowitz, M. J., Clarkson, P. A.: Solitons, nonlinear evolution equations and inverse scattering. London Mathematical Society Lecture Note Series 149. Cambridge: University Press 1991. · Zbl 0762.35001
[13] Abramowitz, M., Stegun, I.: Handbook of mathematical functions. Washington: U. S. Government Printing Office, 1972. · Zbl 0543.33001
[14] Glauert, M. B.: The wall jet. J. Fluid Mech.1, 625-643 (1956). · Zbl 0071.19903 · doi:10.1017/S002211205600041X
[15] Schlichting, H.: Laminare Strahlausbreitung. ZAMM13, 260-263 (1933). · JFM 59.0767.02 · doi:10.1002/zamm.19330130403
[16] Bickley, W. G.: The plane jet. Phil. Mag.23, 727-731 (1937). · JFM 63.1367.01
[17] Merkin, J. H., Needham, D. J.: A note on the wall-jet problem. J. Eng. Math.20, 21-26 (1986). · Zbl 0609.76040 · doi:10.1007/BF00039320
[18] Needham, D. J., Merkin, J. H.: A note on the wall jet problem II. J. Eng. Math.21, 17-22 (1987). · Zbl 0629.76093 · doi:10.1007/BF00127689
[19] Cohen, J., Amitay, M., Bayly, B. J.: Laminar-turbulent transition of wall-jet flows subjected to blowing and suction. Phys. Fluids A4, 283-289 (1992). · Zbl 0825.76158 · doi:10.1063/1.858304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.