×

Stagnation-point flow of a nanofluid towards a stretching sheet. (English) Zbl 1231.80023

Summary: This communication considers the flow of a nanofluid near a stagnation-point towards a stretching surface. The effects of different Brownian motion and thermophoresis numbers are further taken into account. The analytic solutions are obtained using the homotopy analysis method. Special emphasis is given to parameters of physical interest which include stretching ratio \(a/c\), Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt. It is observed that a reduced Nusselt number is an increasing function of the ratio \(a/c\). A comparison of the present results with existing numerical solutions is also given and yields very good results.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
60J65 Brownian motion
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
80M25 Other numerical methods (thermodynamics) (MSC2010)
76M25 Other numerical methods (fluid mechanics) (MSC2010)

Software:

BVPh
Full Text: DOI

References:

[1] Crane, L. J.: Flow past a stretching plate, Z. angew. Math. phys. 21, 645-647 (1970)
[2] Banks, W. H. H.: Similarity solutions of the boundary layer equations for a stretching wall, J. méc. Theor. appl. 2, 375-392 (1983) · Zbl 0538.76039
[3] Magyari, E.; Keller, B.: Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls, Eur. J. Mech. B-fluids 19, 109-122 (2000) · Zbl 0976.76021 · doi:10.1016/S0997-7546(00)00104-7
[4] Hayat, T.; Abbas, Z.; Sajid, M.: Heat and mass transfer analysis on the flows of a second grade fluid in the presence of chemical reaction, Phys. lett. A 372, 2400-2408 (2008) · Zbl 1220.76009 · doi:10.1016/j.physleta.2007.10.102
[5] Abbas, Z.; Wang, Y.; Hayat, T.; Oberlack, M.: Hydromagnetic flow in a viscoelastic fluid due to oscillatory stretching surface, Int. J. Nonlinear mech. 43, 783-793 (2008) · Zbl 1203.76169 · doi:10.1016/j.ijnonlinmec.2008.04.009
[6] Hayat, T.; Sajid, M.; Ayub, M.: On explicit analytic solution for MHD pipe flow of a fourth grade fluid, Commun. nonlinear sci. Numer. simulat. 13, 745-751 (2008) · Zbl 1221.76221 · doi:10.1016/j.cnsns.2006.07.009
[7] Hayat, T.; Farooq, M. A.; Javed, T.; Sajid, M.: Partial slip effects on the flow and heat transfer characteristics in a third grade fluid, Nonlinear anal. Real world appl. 10, 745-755 (2009) · Zbl 1167.76308 · doi:10.1016/j.nonrwa.2007.11.001
[8] Liao, S. J.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluid over a stretching sheet, Fluid mech. 488, 189-212 (2003) · Zbl 1063.76671 · doi:10.1017/S0022112003004865
[9] Abbas, Z.; Hayat, T.: Radiation effects on MHD flow in porous space, Int. J. Heat mass transfer 51, 1024-1033 (2008) · Zbl 1141.76069 · doi:10.1016/j.ijheatmasstransfer.2007.05.031
[10] Cortell, R.: A note on flow and heat transfer of a viscoelastic fluid over a stretching sheet, Int. J. Nonlinear mech. 41, 78-85 (2006) · Zbl 1160.80302 · doi:10.1016/j.ijnonlinmec.2005.04.008
[11] Sajid, M.; Hayat, T.: Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet, Int. commun. Heat mass transfer 35, 347-356 (2008)
[12] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticle, in: D.A. Siginer, H.P. Wang (Eds.), Developments and Applications of Non-Newtonian Flows, ASME FED, vol. 231/ MD-vol. 66, 1995, pp. 99 – 105.
[13] Oztop, H. F.; Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat fluid flow 29, 1326-1336 (2008)
[14] Choi, S. U. S.; Zhang, Z. G.; Yu, W.; Lockwood, F. E.; Grulke, E. A.: Anomalously thermal conductivity enhancement in nanotube suspensions, Appl. phys. Lett. 79, 2252-2254 (2001)
[15] Khanafer, K.; Vafai, K.; Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat mass transfer 46, 3639-3653 (2003) · Zbl 1042.76586 · doi:10.1016/S0017-9310(03)00156-X
[16] Maiga, S. E. B.; Palm, S. J.; Nguyen, C. T.; Roy, G.; Galanis, N.: Heat transfer enhancement by using nanofluids in forced convection flows, Int. J. Heat fluid flow 26, 530-546 (2005)
[17] Tiwari, R. K.; Das, M. K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat mass transfer 50, 2002-2018 (2007) · Zbl 1124.80371 · doi:10.1016/j.ijheatmasstransfer.2006.09.034
[18] Abu-Nada, E.: Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step, Int. J. Heat fluid flow 29, 242-249 (2008)
[19] Muthtamilselvan, M.; Kandaswamy, P.; Lee, J.: Heat transfer enhancement of copper-water nanofluids in a lid-driven enclosure, Commun. nonlinear sci. Numer. simulat. 15, 1501-1510 (2010) · Zbl 1221.76019 · doi:10.1016/j.cnsns.2009.06.015
[20] Ghasemi, B.; Aminossadati, S. M.: Mixed convection in a lid-driven triangular enclosure filled with nanofluids, Int. commun. Heat mass transfer 37, 1142-1148 (2010)
[21] Nield, D. A.; Kuznetsov, A. V.: The cheng – minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid, Int. J. Heat mass transfer 52, 5792-5795 (2009) · Zbl 1177.80046 · doi:10.1016/j.ijheatmasstransfer.2009.07.024
[22] A.V. Kuznetsov, D.A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate, Int. J. Thermal Sci. 2009. · Zbl 1177.80046
[23] Buongiorno, J.: Convective transport in nanofluids, ASME J. Heat transfer 128, 240-250 (2006)
[24] Daungthongsuk, W.; Wongwises, S.: A critical review of convective heat transfer nanofluids, Renew. sust. Eng. rev. 11, 797-817 (2007)
[25] Wang, X. -Q.; Mujumdar, A. S.: A review on nanofluids-part I: Theoretical and numerical investigations, Brazilian J. Chem. eng. 25, 613-630 (2008)
[26] Wang, X. -Q.; Mujumdar, A. S.: A review on nanofluids-part II: Experiments and applications, Brazilian J. Chem. eng. 25, 631-648 (2008)
[27] S. Kakaç, A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids, Int. J. Heat Mass Transfer 2009. · Zbl 1167.80338
[28] Khan, W. A.; Pop, I.: Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat mass transfer 53, 2477-2483 (2010) · Zbl 1190.80017 · doi:10.1016/j.ijheatmasstransfer.2010.01.032
[29] Liao, S. J.: Notes on the homotopy analysis method: some definitions and theorems, Commun. nonlinear sci. Numer. simulat. 14, 983-997 (2009) · Zbl 1221.65126 · doi:10.1016/j.cnsns.2008.04.013
[30] Xu, H.; Liao, S. J.; You, X. C.: Analysis of nonlinear fractional partial differential equations with homotopy analysis method, Commun. nonlinear sci. Numer. simulat. 14, 1152-1156 (2009) · Zbl 1221.65286 · doi:10.1016/j.cnsns.2008.04.008
[31] Xu, H.; Liao, S. J.: Dual solutions of boundary layer flow over an upstream moving plate, Commun. nonlinear sci. Numer. simulat. 13, 350-358 (2008) · Zbl 1131.35066 · doi:10.1016/j.cnsns.2006.04.008
[32] Xu, H.; Liao, S. J.; Pop, I.: Series solution of unsteady boundary layer flows of non-Newtonian fluids near a forward stagnation point, J. non-Newtonian fluid mech. 139, 31-43 (2006) · Zbl 1195.76070 · doi:10.1016/j.jnnfm.2006.06.003
[33] Abbasbandy, S.; Shivanian, E.: Prediction of multiplicity of solutions of nonlinear boundary value problems: novel application of homotopy analysis method, Commun. nonlinear sci. Numer. simulat. 15, 3830-3846 (2010) · Zbl 1222.65081 · doi:10.1016/j.cnsns.2010.01.030
[34] Abbasbandy, S.: Homotopy analysis method for the Kawahara equation, Nonlinear anal.: RWA 11, 307-312 (2010) · Zbl 1181.35224 · doi:10.1016/j.nonrwa.2008.11.005
[35] Abbasbandy, S.; Shirzadi, A.: A new application of the homotopy analysis method: solving the Sturm – Liouville problems, Commun. nonlinear sci. Numer. simulat. 16, 112-126 (2011) · Zbl 1221.65189 · doi:10.1016/j.cnsns.2010.04.004
[36] Hashim, I.; Abdulaziz, O.; Momani, S.: Homotopy analysis method for fractional ivps, Commun. nonlinear sci. Numer. simulat. 14, 674-684 (2009) · Zbl 1221.65277 · doi:10.1016/j.cnsns.2007.09.014
[37] Chowdhury, M. S. H.; Hashim, I.; Abdulaziz, O.: Comparison of homotopy analysis method and homotopy-perturbation method for purely nonlinear fin-type problems, Commun. nonlinear sci. Numer. simulat. 14, 371-378 (2009) · Zbl 1221.80021 · doi:10.1016/j.cnsns.2007.09.005
[38] Bataineh, A. S.; Noorani, M. S. M.; Hashim, I.: Homotopy analysis method for singular ivps of Emden – Fowler type, Commun. nonlinear sci. Numer. simulat 14, 1121-1131 (2009) · Zbl 1221.65197 · doi:10.1016/j.cnsns.2008.02.004
[39] Hayat, T.; Qasim, M.; Abbas, Z.: Radiation and mass transfer effects on the magnetohydrodynamic unsteady flow induced by a stretching sheet, Z. naturforsch. 65a, 231-239 (2010)
[40] Hayat, T.; Mustafa, M.; Pop, I.: Heat and mass transfer for Sorét and dufour’s effect on mixed convection boundary layer flow over a stretching vertical surface in a porous medium filled with viscoelastic fluid, Commun. nonlinear sci. Numer. simulat. 15, 1183-1196 (2010) · Zbl 1221.80005 · doi:10.1016/j.cnsns.2009.05.062
[41] Hayat, T.; Mustafa, M.; Asghar, S.: Unsteady flow with heat and mass transfer of a third grade fluid over a stretching surface in the presence of chemical reaction, Nonlinear anal. RWA 11, 3186-3197 (2010) · Zbl 1196.35163 · doi:10.1016/j.nonrwa.2009.11.012
[42] Hayat, T.; Mustafa, M.; Mesloub, S.: Mixed convection boundary layer flow over a stretching surface filled with a Maxwell fluid in presence of Sorét and dufour effects, Z. naturforsch. 65a, 401-410 (2010)
[43] Hayat, T.; Mustafa, M.: Influence of thermal radiation on the unsteady mixed convection flow of a Jeffrey fluid over a stretching sheet, Z. naturforsch. 65a, 711-719 (2010)
[44] Ishak, A.; Nazar, R.; Amin, N.; Filip, D.; Pop, I.: Mixed convection in the stagnation-point flow towards a stretching vertical permeable sheet, Malaysian J. Math. sci. 2, 217-226 (2007)
[45] Mahapatra, T. R.; Gupta, A. S.: Heat transfer in the stagnation-point flow towards a stretching surface, Heat mass transfer 38, 517-521 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.