×

Cohomology of virtually nilpotent groups with coefficients in \(\mathbb{R}^k\). (English) Zbl 1163.20033

Let \(n>0\). A polynomial diffeomorphism \(p\colon\mathbb{R}^n\to\mathbb{R}^n\) of \(\mathbb{R}^n\) is a bijective map such that both \(p\) and \(p^{-1}\) can be expressed as polynomials. The group of polynomial diffeomorphisms is denoted by \(\mathcal P(\mathbb{R}^n)\). An action \(\rho\colon G\to\mathcal P(\mathbb{R}^n)\) of a group \(G\) on \(\mathbb{R}^n\) via polynomial diffeomorphisms is called polynomial crystallographic if it is both properly discontinuous and cocompact.
In the article are proved the following two theorems: (I) Let \(N\) be a finitely generated torsion-free nilpotent group, \(\rho\colon N\to\mathcal P(\mathbb{R}^n)\) be a polynomial crystallographic action and \(\varphi\colon N\to\text{GL}(k,\mathbb{R})\) a unipotent \(N\)-module structure for \(\mathbb{R}^k\). Then the cochain map \[ \Omega^*_P(\mathbb{R}^n,\mathbb{R}^k)^{\rho(N),\varphi(N)}\to\operatorname{Hom}_{\mathbb{Z} G}(C_*(\mathbb{R}^n),\mathbb{R}^k) \] induces an isomorphism on cohomology, \[ H^*(\Omega^*_P(\mathbb{R}^n,\mathbb{R}^k)^{\rho(N),\varphi(N)})\cong H^*_\varphi(N,\mathbb{R}^k), \] where \(\Omega^*_P(\mathbb{R}^n,\mathbb{R}^k)^{\rho(N),\varphi(N)}\) is some subspace of all \(k\)-tuples of differential forms on \(\mathbb{R}^n\); (II) Suppose \(M\) is the maximal unipotent submodule of \(\mathbb{R}^k\), with an \(N\)-action given by \(\varphi_U\colon N\to\text{GL}(M)\). Then \(H^*_\varphi(N,\mathbb{R}^k)\cong H^*_{\varphi U}(N,M)\).
The paper is an extention/continuation of an earlier article of the authors [Trans. Am. Math. Soc. 359, No. 6, 2539-2558 (2007; Zbl 1123.20043)]. On the last 4 pages of the article under review are given applications of the above theorems to the calculation of some cohomology of virtually nilpotent and Abelian groups.

MSC:

20J06 Cohomology of groups
20F18 Nilpotent groups
55N35 Other homology theories in algebraic topology
20J05 Homological methods in group theory
20H15 Other geometric groups, including crystallographic groups
53C99 Global differential geometry
57T15 Homology and cohomology of homogeneous spaces of Lie groups

Citations:

Zbl 1123.20043
Full Text: DOI

References:

[1] Y. Benoist and K. Dekimpe,The uniqueness of polynomial crystallographic actions; Mathematische Annalen322 (2002), 563–571. · Zbl 0999.20043 · doi:10.1007/s002080200005
[2] K. S. Brown,Cohomology of Groups, Volume 87 of Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1982. · Zbl 0584.20036
[3] K. Dekimpe,Any virtually polycyclic group admits a NIL-affine crystallographic action, Topology42 (2003), 821–832. · Zbl 1036.20044 · doi:10.1016/S0040-9383(02)00030-7
[4] K. Dekimpe and P. Igodt,Polynomial structures for nilpotent groups, Transactions of the American Mathematical Society348 (1996), 77–97. · Zbl 0859.57040 · doi:10.1090/S0002-9947-96-01513-9
[5] K. Dekimpe and P. Igodt,Polycyclic-by-finite groups admit a bounded-degree polynomial structure, Transactions of the American Mathematical Society349 (1997), 3597–3610. · Zbl 0883.57038 · doi:10.1090/S0002-9947-97-01924-7
[6] K. Dekimpe, P. Igodt and K. B. Lee,Polycyclic-by-finite groups admit a boundeddegree polynomial structure, Inventiones Mathematicae129 (1997), 121–140. · Zbl 0867.20031 · doi:10.1007/s002220050160
[7] K. Dekimpe and H. Pouseele,The real cohomology of virtually nilpotent groups, Preprint, 2002. · Zbl 1123.20043
[8] G. de Rham,Sur l’analysis situs des variétés à n dimensions, Journal de Mathématiques Pures et Appliquées10 (1931), 115–200. · Zbl 0002.05502
[9] D. Fried, W. Goldman and M. Hirsch,Affine manifolds with nilpotent holonomy, Commentarii Mathematici Helvetici56 (1981), 487–523. · Zbl 0516.57014 · doi:10.1007/BF02566225
[10] S. Mac Lane,Homology, Volume 114 of Die Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1975.
[11] W. S. Massey,Singular Homology Theory, Volume 70 of Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1980. · Zbl 0442.55001
[12] K. Nomizu,On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Annals of Mathematics59 (1954), 531–538. · Zbl 0058.02202 · doi:10.2307/1969716
[13] D. Segal,Polycyclic Groups, Cambridge University Press, 1983. · Zbl 0516.20001
[14] G. Whitehead,Elements of Homotopy Theory, Volume 61 of Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1978. · Zbl 0406.55001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.