×

Uncertainty principles for the \(q\)-Bessel windowed transform and localization operators. (English) Zbl 1533.42008

Author’s abstract: In this work, considering the \(q\)-harmonic analysis associated with the \(q\)-Bessel Fourier operator of order zero, for a fixed \(q\in ]0,1[\), we define the \(q\)-Bessel windowed transform and show a \(q\)-analogue of the usual inversion formula. Then, Schatten-class properties of localization operators associated with the \(q\)-Bessel windowed transform are studied. A new version of Heisenberg’s uncertainty principles and concentration-type principles for the \(q\) windowed Bessel Fourier transform is also proved. Finally, we will show that these uncertainty principles can be refined for orthonormal sequences.

MSC:

42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
05A30 \(q\)-calculus and related topics
33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\)
Full Text: DOI

References:

[1] N. Bettaibi, F. Bouzeffour, H. Ben Elmonser and W. Binous, Elements of harmonic analysis related to the third basic zero order Bessel function.. J. Math. Anal. Appl., 324(2008) 1203-1219. · Zbl 1154.33007
[2] Cohen, L., Generalized phase-space distribution functions, J. Math. Phys, 7, 781-786 (1966) · doi:10.1063/1.1931206
[3] Cohen, L., Time-frequency distributions-a review. Pro. IEEE, 77, 941-981 (1989)
[4] Debnath, L.; Shah, FA, Lectuer Notes on Wavelet Transforms (2017), Boston: Birkhäuser, Boston · Zbl 1379.42001 · doi:10.1007/978-3-319-59433-0
[5] Dhaouadi, L., On the \(q\)-Bessel Fourier transform, Bull. Math. Anal. Appl., 5, 2, 42-60 (2013) · Zbl 1314.33016
[6] Dhaouadi, L.; Binous, W.; Fitouhi, A., Paley-Wiener theorem for the \(q\)-Bessel Fourier transform and associated q-sampling formula, Expos. Math, 27, 1, 55-72 (2009) · Zbl 1172.33308 · doi:10.1016/j.exmath.2008.07.002
[7] Fitouhi, A.; Dhaoudi, L., Positivity of the generalized translation associated with the \(q\)-Hankel transform, Constr. Approx., 34, 435-472 (2011) · Zbl 1247.33030 · doi:10.1007/s00365-011-9132-0
[8] Fitouhi, A.; Hamza, MM; Bouzeffour, F., The \(q-J_{\alpha }\) Bessel function, J. Approx. Theory., 115, 144-166 (2002) · Zbl 1003.33007 · doi:10.1006/jath.2001.3645
[9] D. Gabor, Theory of communication. part 1: The analysis of information. Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, ;93(26) (1946): 429-441.
[10] Gasper, G.; Rahman, M., Basic Hypergeometric Series Encyclopedia of Mathematics and its Application, 35 (1990), Cambridge: Cambridge University Press, Cambridge · Zbl 0695.33001
[11] S. Ghobber, Time-frequency concentration and localization operators in the Dunkl setting, 7(3) (2016): 431-449. J. Pseudo-Differ. Oper. Appl. · Zbl 1358.42031
[12] Jackson, FH, On \(q-\) definite integrals Quart, J. Pur. Appl. Maths., 41, 193-203 (1910) · JFM 41.0317.04
[13] T. H. Koorwinder and R. F. Swarttouw, On \(q-\) analogues of the Fourier and Hankel transforms, Trans. Amer. Soc, 333, (1992): 445-461. · Zbl 0759.33007
[14] Liu, L., A trace class operator inequality, J. Math. Anal. Appl., 328, 1484-1486 (2007) · Zbl 1114.47020 · doi:10.1016/j.jmaa.2006.04.092
[15] E. Malinnikova, Orthonormal sequences in \(L^2(\mathbb{R}^d)\) and time frequency localization. J. Fourier. Anal. Appl 16 (2010): 983-1006. · Zbl 1210.42020
[16] H. Mejjaoli, \(k\)-Hankel Gabor transform on \(\mathbb{R}^d\) and its Applications to the Reproducing Kernel Theory. Complex Anal. Oper. Theory. 47(3) (2021): 1-35.
[17] H. Mejjaoli, Practical inversion formulas for the Dunkl-Gabor transform on \(\mathbb{R}^d \). Integral Transforms. Spec. Funct. 33 (2012): 875-890. · Zbl 1257.35005
[18] Mejjaoli, H.; Sraieb, N., Gabor transform in quantum calculus and applications, Fractional Calculus and Applied Analysis., 12, 3, 319-336 (2009) · Zbl 1182.33026
[19] Mejjaoli, H.; Sraieb, N., Wavelet-multipliers analysis in the framework of the q-Dunkl theory, Int. J. Open Problems Complex Analysis., 11, 3, 1-27 (2019)
[20] H. Mejjaoli and N. Sraieb, Time frequency analysis associated with the q-Bessel Stockwell transform. Preprint (2021) · Zbl 1482.44008
[21] H. Mejjaoli and N. Sraieb, The uncertainty principles for the q-Dunkl Gabor transform. Preprint (2022). · Zbl 1181.26036
[22] Mejjaoli, H.; Sraieb, N., The q-Dunkl wavelet theory and localization operators, Int. J. Open Problems Compt. Math., 13, 3, 106-127 (2020)
[23] Mejjaoli, H.; Sraieb, N., Localization operators associated with the q-Bessel wavelet transform and applications, International Journal of Wavelets, Multiresolution and Information Processing., 19, 4, 1-33 (2021) · Zbl 1482.44008 · doi:10.1142/S0219691320500940
[24] A. P. Polychronakos, Exchange operator formalism for integrable systems of particles.Phys. Rev. Lett., 69 (1992). · Zbl 0968.37521
[25] J.F. Price, Inequalities and local uncertainty principles, Math. Phys.,: 24 (1978): 1711-1714. · Zbl 0513.60100
[26] N. Sraieb, \(k\)-Hankel Wigner transform and its applications to the Localization operators theory. J. Pseudo-Differ. Oper. Appl. 13 Juillet 2022., 13(3) (2022): 1-34. · Zbl 1518.43001
[27] Stein, EM, Interpolation of linear operators, Trans. Amer. Math. Soc., 83, 482-492 (1956) · Zbl 0072.32402 · doi:10.1090/S0002-9947-1956-0082586-0
[28] K. Trimèche, Generalized Wavelets and Hypergroups. Gordon and Breach Science Publishers, (1997). · Zbl 0926.42016
[29] Tyr, O.; Daher, R., Two-wavelet theory and two-wavelet localization operators on the \(q\)-Dunkl harmonic analysis, Assian-European Journal of Mathematics., 15, 12, 1-24 (2022) · Zbl 1504.42029
[30] M.W. Wong,Wavelet transforms and localization operators, 136, Springer Science & Business Media, 2002. · Zbl 1016.42017
[31] Zayed, AI, Function and Generalized Function Transformations (1996), Boca Raton, FL: CRC Press, Boca Raton, FL · Zbl 0851.44002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.