×

Explicit and spontaneous breaking of \(\operatorname{SU}(3)\) into its finite subgroups. (English) Zbl 1309.81335

Summary: We investigate the breaking of \(\operatorname{SU}(3)\) into its subgroups from the viewpoints of explicit and spontaneous breaking. A one-to-one link between these two approaches is given by the complex spherical harmonics, which form a complete set of \(\operatorname{SU}(3)\)-representation functions. An invariant of degrees \(p\) and \(q\) in complex conjugate variables corresponds to a singlet, or vacuum expectation value, in a \((p, q\))-representation of \(\operatorname{SU}(3)\). We review the formalism of the Molien function, which contains information on primary and secondary invariants. Generalizations of the Molien function to the tensor generating functions are discussed. The latter allows all branching rules to be deduced. We have computed all primary and secondary invariants for all proper finite subgroups of order smaller than 512, for the entire series of groups \(\Delta(3n^{2})\), \(\Delta(6n^{2})\), and for all crystallographic groups. Examples of sufficient conditions for breaking into a subgroup are worked out for the entire \(T_{n[a]}-,\; \Delta(3n^{2})-,\; \Delta(6n^{2})\)-series and for all crystallographic groups \(\Sigma(X)\). The corresponding invariants provide an alternative definition of these groups. A Mathematica package, SUtree, is provided which allows the extraction of the invariants, Molien and generating functions, syzygies, VEVs, branching rules, character tables, matrix \((p, q)_{\operatorname{SU(3)}}\)-representations, Kronecker products, etc. for the groups discussed above.

MSC:

81V22 Unified quantum theories
81R40 Symmetry breaking in quantum theory
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
33C55 Spherical harmonics
30C35 General theory of conformal mappings
81-08 Computational methods for problems pertaining to quantum theory

References:

[1] P. Harrison, D. Perkins and W. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].
[2] F. Caravaglios and S. Morisi, Neutrino masses and mixings with an S3 family permutation symmetry, hep-ph/0503234 [INSPIRE]. · Zbl 1124.81040
[3] G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [INSPIRE]. · doi:10.1016/j.nuclphysb.2005.05.005
[4] W. Grimus and L. Lavoura, A model realizing the Harrison-Perkins-Scott lepton mixing matrix, JHEP 01 (2006) 018 [hep-ph/0509239] [INSPIRE]. · doi:10.1088/1126-6708/2006/01/018
[5] G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [INSPIRE]. · Zbl 1214.81289 · doi:10.1016/j.nuclphysb.2006.02.015
[6] H.K. Dreiner, C. Luhn and M. Thormeier, What is the discrete gauge symmetry of the MSSM?, Phys. Rev. D 73 (2006) 075007 [hep-ph/0512163] [INSPIRE].
[7] I. de Medeiros Varzielas, S. King and G. Ross, Tri-bimaximal neutrino mixing from discrete subgroups of SU(3) and SO(3) family symmetry, Phys. Lett. B 644 (2007) 153 [hep-ph/0512313] [INSPIRE].
[8] C. Hagedorn, M. Lindner and R. Mohapatra, S4 flavor symmetry and fermion masses: towards a grand unified theory of flavor, JHEP 06 (2006) 042 [hep-ph/0602244] [INSPIRE]. · doi:10.1088/1126-6708/2006/06/042
[9] S.F. King and M. Malinsky, A4 family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007)351 [hep-ph/0610250] [INSPIRE].
[10] S. Morisi, M. Picariello and E. Torrente-Lujan, Model for fermion masses and lepton mixing in SO(10) × A4, Phys. Rev. D 75 (2007) 075015 [hep-ph/0702034] [INSPIRE].
[11] C. Luhn, S. Nasri and P. Ramond, Tri-bimaximal neutrino mixing and the family symmetry semidirect product of Z(7) and Z(3), Phys. Lett. B 652 (2007) 27 [arXiv:0706.2341] [INSPIRE].
[12] F. Bazzocchi, S. Kaneko and S. Morisi, A SUSY A4 model for fermion masses and mixings, JHEP 03 (2008) 063 [arXiv:0707.3032] [INSPIRE]. · doi:10.1088/1126-6708/2008/03/063
[13] G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) grand unified model of tri-bimaximal mixing from A4, JHEP 03 (2008) 052 [arXiv:0802.0090] [INSPIRE]. · doi:10.1088/1126-6708/2008/03/052
[14] F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton flavour violation in models with A4 flavour symmetry, Nucl. Phys. B 809 (2009) 218 [arXiv:0807.3160] [INSPIRE]. · Zbl 1192.81385 · doi:10.1016/j.nuclphysb.2008.10.002
[15] F. Bazzocchi, M. Frigerio and S. Morisi, Fermion masses and mixing in models with SO(10) × A4 symmetry, Phys. Rev. D 78 (2008) 116018 [arXiv:0809.3573] [INSPIRE].
[16] F. Bazzocchi and S. Morisi, S4 as a natural flavor symmetry for lepton mixing, Phys. Rev. D 80 (2009) 096005 [arXiv:0811.0345] [INSPIRE].
[17] F. Bazzocchi, L. Merlo and S. Morisi, Fermion masses and mixings in a S(4)-based model, Nucl. Phys. B 816 (2009) 204 [arXiv:0901.2086] [INSPIRE]. · Zbl 1194.81278 · doi:10.1016/j.nuclphysb.2009.03.005
[18] F. Bazzocchi, L. Merlo and S. Morisi, Phenomenological consequences of see-saw in S4 based models, Phys. Rev. D 80 (2009) 053003 [arXiv:0902.2849] [INSPIRE].
[19] M.-C. Chen and S.F. King, A4 see-saw models and form dominance, JHEP 06 (2009) 072 [arXiv:0903.0125] [INSPIRE]. · doi:10.1088/1126-6708/2009/06/072
[20] G. Altarelli, F. Feruglio and L. Merlo, Revisiting bimaximal neutrino mixing in a model with S4 discrete symmetry, JHEP 05 (2009) 020 [arXiv:0903.1940] [INSPIRE]. · doi:10.1088/1126-6708/2009/05/020
[21] G. Altarelli and D. Meloni, A Simplest A4 Model for Tri-Bimaximal Neutrino Mixing, J. Phys. G 36 (2009) 085005 [arXiv:0905.0620] [INSPIRE].
[22] F. Feruglio, C. Hagedorn and L. Merlo, Vacuum alignment in SUSY A4 models, JHEP 03 (2010)084 [arXiv:0910.4058] [INSPIRE]. · Zbl 1271.81198 · doi:10.1007/JHEP03(2010)084
[23] S.F. King and C. Luhn, A Supersymmetric Grand Unified Theory of Flavour with PSL2(7) × SO(10), Nucl. Phys. B 832 (2010) 414 [arXiv:0912.1344] [INSPIRE]. · Zbl 1204.81186 · doi:10.1016/j.nuclphysb.2010.02.019
[24] C. Hagedorn, S.F. King and C. Luhn, A SUSY GUT of Flavour with S4 × SU(5) to NLO, JHEP 06 (2010) 048 [arXiv:1003.4249] [INSPIRE]. · Zbl 1290.81213 · doi:10.1007/JHEP06(2010)048
[25] C. Hagedorn and M. Serone, Leptons in Holographic Composite Higgs Models with Non-Abelian Discrete Symmetries, JHEP 10 (2011) 083 [arXiv:1106.4021] [INSPIRE]. · Zbl 1303.81238 · doi:10.1007/JHEP10(2011)083
[26] R.D.A. Toorop, F. Feruglio and C. Hagedorn, Discrete Flavour Symmetries in Light of T2K, Phys. Lett. B 703 (2011) 447 [arXiv:1107.3486] [INSPIRE].
[27] S.F. King and C. Luhn, Trimaximal neutrino mixing from vacuum alignment in A4 and S4 models, JHEP 09 (2011) 042 [arXiv:1107.5332] [INSPIRE]. · Zbl 1301.81350 · doi:10.1007/JHEP09(2011)042
[28] W. Buchmüller and J. Schmidt, Higgs versus Matter in the Heterotic Landscape, Nucl. Phys. B 807 (2009) 265 [arXiv:0807.1046] [INSPIRE]. · Zbl 1192.81368 · doi:10.1016/j.nuclphysb.2008.09.011
[29] T. Kobayashi, H.P. Nilles, F. Ploger, S. Raby and M. Ratz, Stringy origin of non-Abelian discrete flavor symmetries, Nucl. Phys. B 768 (2007) 135 [hep-ph/0611020] [INSPIRE]. · Zbl 1117.81354 · doi:10.1016/j.nuclphysb.2007.01.018
[30] A. Adulpravitchai, A. Blum and M. Lindner, Non-Abelian Discrete Groups from the Breaking of Continuous Flavor Symmetries, JHEP 09 (2009) 018 [arXiv:0907.2332] [INSPIRE]. · doi:10.1088/1126-6708/2009/09/018
[31] W. Burnside, Theory of groups of finite order, second edition, Cambridge University Press, Cambridge U.K. (1897). · JFM 28.0118.03
[32] E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen (in German), Math. Ann. 77 (1916) 89. · JFM 45.0198.01 · doi:10.1007/BF01456821
[33] B. Sturmfels, Algorithms in Invariant Theory, Texts and Monographs in Symbolic Computation, Springer, Heidelberg Germany (1993). · Zbl 0802.13002
[34] B. Meyer, On the symmetries of spherical harmonics, Canad. J. Math. 6 (1954) 135. · Zbl 0055.06301 · doi:10.4153/CJM-1954-016-2
[35] M. Koca, M. Al-Barwani and R. Koc, Breaking SO(3) into its closed subgroups by Higgs mechanism, J. Phys. A 30 (1997) 2109 [INSPIRE]. · Zbl 0928.20038
[36] J. Patera and R.T. Sharp, Generating Functions For Characters Of Group Representations And Their Applications, Lect. Notes Phys. 94 (1979) 175. · doi:10.1007/3-540-09238-2_46
[37] T. Molien, Über die Invarianten der linearen Substitutionsgruppen (in German), Sitzungber. Konig. Preuss. Akad. Wiss. (J. Berl. Ber.) 52 (1897) 1152. · JFM 28.0115.01
[38] J.D. Dixon and B. Mortimer, Permutation Groups, Graduate Texts in Mathematics, Springer, Heidelberg Germany (1996). · Zbl 0951.20001
[39] L. O’Raifeartaigh, Group Structure Of Gauge Theories, Cambridge Monographs On Mathematical Physics, Cambridge University Press, Cambridge U.K. (1986). · Zbl 0606.22013 · doi:10.1017/CBO9780511564031
[40] L. Michel, Symmetry defects and broken symmetry. Configurations — hidden symmetry, Rev. Mod. Phys. 52 (1980) 617 [INSPIRE]. · doi:10.1103/RevModPhys.52.617
[41] M.J. Linehan and G.E. Stedman, Little groups of irreps of O(3), SO(3), and the infinite axial subgroups, J. Phys. A 34 (2001) 6663 [math-ph/0012008]. · Zbl 1019.81022
[42] P.O. Ludl, On the finite subgroups of U(3) of order smaller than 512, J. Phys. A 43 (2010) 395204 [Erratum ibid. A 44 (2011) 139501] [arXiv:1006.1479] [INSPIRE]. · Zbl 1200.81082
[43] G.A. Miller, H.F. Blichfeldt and L.E. Dickson, Theory and Applications of Finite Groups, John Wiley & Sons, New York U.S.A. (1916) [Dover, New York U.S.A. (1961)]. · JFM 46.0171.02
[44] L. Michel and B.I. Zhilinskii, Symmetry, Invariants, and Topology. I. Basic Tools, Phys. Rept. 341 (2001) 11. · Zbl 0971.22500 · doi:10.1016/S0370-1573(00)00088-0
[45] K.M. Parattu and A. Wingerter, Tribimaximal Mixing From Small Groups, Phys. Rev. D 84 (2011)013011 [arXiv:1012.2842] [INSPIRE].
[46] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE]. · Zbl 1196.81276 · doi:10.1143/PTPS.183.1
[47] W. Fairbairn and T. Fulton, Some comments on finite subgroups of SU(3), J. Math. Phys. 23 (1982)1747 [INSPIRE]. · Zbl 0508.20024 · doi:10.1063/1.525224
[48] A. Bovier, M. Luling and D. Wyler, Representations and Clebsch-Gordan coefficients of Z metacyclic groups, J. Math. Phys. 22 (1981) 1536 [INSPIRE]. · Zbl 0501.20005 · doi:10.1063/1.525095
[49] B. Durhuus, T. Jonsson and J.F. Wheater, Random walks on combs, J. Phys. A 39 (2006) 1009 [hep-th/0509191] [INSPIRE]. · Zbl 1220.82057
[50] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.4.12, (2008) http://www.gap-system.org
[51] H.U. Besche, B. Eick and E.A. O’Brien, SmallGroups — a GAP package (2002), http://www.gap-system.org/Packages/sgl.html, http://www.icm.tu-bs.de/ag_algebra/software/small/
[52] J.E. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, Cambridge U.K. (1990). · Zbl 0725.20028 · doi:10.1017/CBO9780511623646
[53] P.O. Ludl, Comments on the classification of the finite subgroups of SU(3), J. Phys. A 44 (2011)255204 [arXiv:1101.2308] [INSPIRE]. · Zbl 1219.81148
[54] W. Grimus and P.O. Ludl, Finite flavour groups of fermions, arXiv:1110.6376 [INSPIRE]. · Zbl 1246.81068
[55] P.O. Ludl, Systematic analysis of finite family symmetry groups and their application to the lepton sector, arXiv:0907.5587 [INSPIRE].
[56] R. Zwicky and T. Fischbacher, On discrete minimal flavour violation, Phys. Rev. D 80 (2009)076009 [arXiv:0908.4182] [INSPIRE].
[57] C. Luhn, Spontaneous breaking of SU(3) to finite family symmetries: a pedestrian’s approach, JHEP 03 (2011) 108 [arXiv:1101.2417] [INSPIRE]. · Zbl 1301.81352 · doi:10.1007/JHEP03(2011)108
[58] P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer, New York U.S.A. (1997), pg. 890. · Zbl 0869.53052 · doi:10.1007/978-1-4612-2256-9
[59] P. Ramond, Group Theory in Physics. A physicists survey, Cambridge University Press, Cambridge U.K. (2010). · Zbl 1205.20001
[60] J.F. Cornwell, Group Theory in Physics, Vol. 1, Academic Press, New York U.S.A. (1997). · Zbl 0878.20001
[61] W. Specht, Zur Theorie der Gruppen linearer Substitutionen II (in German), Jber. Deutsch. Math. Verein. 49 (1940) 207. · JFM 66.0085.03
[62] A. Hanany and Y.-H. He, A Monograph on the classification of the discrete subgroups of SU(4), JHEP 02 (2001) 027 [hep-th/9905212] [INSPIRE]. · doi:10.1088/1126-6708/2001/02/027
[63] L.L. Everett and A.J. Stuart, Icosahedral A5 Family Symmetry and the Golden Ratio Prediction for Solar Neutrino Mixing, Phys. Rev. D 79 (2009) 085005 [arXiv:0812.1057] [INSPIRE].
[64] G. Etesi, Spontaneous symmetry breaking in SO(3) gauge theory to discrete subgroups, J. Math. Phys. 37 (1996) 1596 [hep-th/9706029] [INSPIRE]. · Zbl 0860.22014 · doi:10.1063/1.531470
[65] M. Koca, R. Koc and H. Tutunculer, Explicit breaking of SO(3) with Higgs fields in the representations L = 2 and L = 3, Int. J. Mod. Phys. A 18 (2003) 4817 [hep-ph/0410270] [INSPIRE]. · Zbl 1050.81031
[66] M. Holthausen and M.A. Schmidt, Natural Vacuum Alignment from Group Theory: The Minimal Case, JHEP 01 (2012) 126 [arXiv:1111.1730] [INSPIRE]. · Zbl 1306.81374 · doi:10.1007/JHEP01(2012)126
[67] J. Berger and Y. Grossman, Model of leptons from SO(3) → A4, JHEP 02 (2010) 071 [arXiv:0910.4392] [INSPIRE]. · Zbl 1270.81222 · doi:10.1007/JHEP02(2010)071
[68] G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE]. · doi:10.1103/RevModPhys.82.2701
[69] J. Patera, R.T. Sharp and P. Winternitz, Polynomial irreducible tensors for point groups, J. Math. Phys. 19 (1978) 2362. · Zbl 0464.20011 · doi:10.1063/1.523595
[70] R. King, J. Patera and R.T. Sharp, On finite and continuous little groups of representations of semi-simple Lie groups, J. Phys. A 15 (1982) 1143. · Zbl 0503.22005
[71] P. Desmier, R. Sharp and J. Patera, Analytic SU(3) states in a finite subgroup basis, J. Math. Phys. 23 (1982) 1393 [INSPIRE]. · Zbl 0512.22016 · doi:10.1063/1.525529
[72] J.D. Louck, Unitary symmetry and combinatorics, World Scientific, New York U.S.A. (2008). · Zbl 1190.51002 · doi:10.1142/9789812814739
[73] M. Ikeda, On Complex Spherical Harmonics, Prog. Theor. Phys. 32 (1964) 178. · Zbl 0173.30003 · doi:10.1143/PTP.32.178
[74] T. Kayama, On the normalization of solid harmonics for U(3), Prog. Theor. Phys. 39 (1968) 850 [INSPIRE]. · doi:10.1143/PTP.39.850
[75] H. Georgi, Frontiers in Physics. Vol. 54: Lie Algebras in Particle Physics. From Isospin to Unified Theories, Westview Press, Boulder U.S.A. (1982). · Zbl 0505.00036
[76] R. Slansky, Group Theory for Unified Model Building, Phys. Rept. 79 (1981) 1 [INSPIRE]. · doi:10.1016/0370-1573(81)90092-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.