Skip to main content
Log in

Model of leptons from SO(3) → A 4

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The lepton sector masses and mixing angles can be explained in models based on A 4 symmetry. A 4 is a non-Abelian discrete group. Therefore, one issue in constructing models based on it is explaining the origin of A 4. A plausible mechanism is that A 4 is an unbroken subgroup of a continuous group that is broken spontaneously. We construct a model of leptons where the A 4 symmetry is obtained by spontaneous symmetry breaking of SO(3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHOOZ collaboration, M. Apollonio et al., Search for neutrino oscillations on a long base-line at the CHOOZ nuclear power station, Eur. Phys. J. C 27 (2003) 331 [hep-ex/0301017] [SPIRES].

    ADS  Google Scholar 

  2. SNO collaboration, B. Aharmim et al., Electron energy spectra, fluxes and day-night asymmetries of B-8 solar neutrinos from the 391-day salt phase SNO data set, Phys. Rev. C 72 (2005) 055502 [nucl-ex/0502021] [SPIRES].

    ADS  Google Scholar 

  3. K2K collaboration, M.H. Ahn et al., Measurement of Neutrino Oscillation by the K2K Experiment, Phys. Rev. D 74 (2006) 072003 [hep-ex/0606032] [SPIRES].

    ADS  Google Scholar 

  4. Super-Kamiokande collaboration, K. Abe et al., A Measurement of Atmospheric Neutrino Flux Consistent with Tau Neutrino Appearance, Phys. Rev. Lett. 97 (2006) 171801 [hep-ex/0607059] [SPIRES].

    Article  ADS  Google Scholar 

  5. KamLAND collaboration, S. Abe et al., Precision Measurement of Neutrino Oscillation Parameters with KamLAND, Phys. Rev. Lett. 100 (2008) 221803 [arXiv:0801.4589] [SPIRES].

    Article  ADS  Google Scholar 

  6. CKMfitter Group collaboration, J. Charles et al., CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [SPIRES].

    Article  ADS  Google Scholar 

  7. UTfit collaboration, M. Bona et al., The 2004 UTfit Collaboration report on the status of the unitarity triangle in the standard model, JHEP 07 (2005) 028 [hep-ph/0501199] [SPIRES].

    Google Scholar 

  8. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  9. B. Pontecorvo, Neutrino experiments and the question of leptonic-charge conservation, Sov. Phys. JETP 26 (1968) 984 [SPIRES].

    ADS  Google Scholar 

  10. Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  11. P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].

    ADS  Google Scholar 

  12. G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [SPIRES].

    Article  ADS  Google Scholar 

  13. K.S. Babu, E. Ma and J.W.F. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [SPIRES].

    ADS  Google Scholar 

  14. G. Altarelli, Theoretical Models of Neutrino Mixing: Recent Developments, arXiv:0905.2350 [SPIRES].

  15. G.L. Fogli et al., Observables sensitive to absolute neutrino masses (Addendum), Phys. Rev. D 78 (2008) 033010 [arXiv:0805.2517] [SPIRES].

    ADS  Google Scholar 

  16. G. Altarelli, Status of Neutrino Masses and Mixing in 2009, arXiv:0905.3265 [SPIRES].

  17. E. Ma, Tribimaximal neutrino mixing from a supersymmetric model with A4 family symmetry, Phys. Rev. D 73 (2006) 057304 [hep-ph/0511133] [SPIRES].

    ADS  Google Scholar 

  18. E. Ma, Supersymmetric A 4 × Z 3 and A 4 Realizations of Neutrino Tribimaximal Mixing Without and With Corrections, Mod. Phys. Lett. A 22 (2007) 101 [hep-ph/0610342] [SPIRES].

    ADS  Google Scholar 

  19. F. Bazzocchi, S. Kaneko and S. Morisi, A SUSY A4 model for fermion masses and mixings, JHEP 03 (2008) 063 [arXiv:0707.3032] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. P.H. Frampton and S. Matsuzaki, Renormalizable A 4 Model for Lepton Sector, arXiv:0806.4592 [SPIRES].

  21. G. Altarelli and D. Meloni, A Simplest A4 Model for Tri-Bimaximal Neutrino Mixing, J. Phys. G 36 (2009) 085005 [arXiv:0905.0620] [SPIRES].

    ADS  Google Scholar 

  22. C. Csáki, C. Delaunay, C. Grojean and Y. Grossman, A Model of Lepton Masses from a Warped Extra Dimension, JHEP 10 (2008) 055 [arXiv:0806.0356] [SPIRES].

    Article  ADS  Google Scholar 

  23. G. Altarelli and F. Feruglio, Tri-Bimaximal Neutrino Mixing, A4 and the Modular Symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. G. Altarelli, F. Feruglio and Y. Lin, Tri-bimaximal neutrino mixing from orbifolding, Nucl. Phys. B 775 (2007) 31 [hep-ph/0610165] [SPIRES].

    Article  ADS  Google Scholar 

  25. F. Bazzocchi, S. Morisi and M. Picariello, Embedding A4 into left-right flavor symmetry: Tribimaximal neutrino mixing and fermion hierarchy, Phys. Lett. B 659 (2008) 628 [arXiv:0710.2928] [SPIRES].

    ADS  Google Scholar 

  26. F. Bazzocchi, S. Morisi, M. Picariello and E. Torrente-Lujan, Embedding A4 into SU(3) × U(1) flavor symmetry: Large neutrino mixing and fermion mass hierarchy in SO(10) GUT, J. Phys. G 36 (2009) 015002 [arXiv:0802.1693] [SPIRES].

    ADS  Google Scholar 

  27. A. Adulpravitchai, A. Blum and M. Lindner, Non-Abelian Discrete Groups from the Breaking of Continuous Flavor Symmetries, JHEP 09 (2009) 018 [arXiv:0907.2332] [SPIRES].

    Article  Google Scholar 

  28. E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [SPIRES].

    ADS  Google Scholar 

  29. E. Ma, Quark Mass Matrices in the A 4 Model, Mod. Phys. Lett. A 17 (2002) 627 [hep-ph/0203238] [SPIRES].

    ADS  Google Scholar 

  30. K.S. Babu, E. Ma and J.W.F. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [SPIRES].

    ADS  Google Scholar 

  31. M. Hirsch, J.C. Romao, S. Skadhauge, J.W.F. Valle and A. Villanova del Moral, Degenerate neutrinos from a supersymmetric A 4 model, hep-ph/0312244 [SPIRES].

  32. M. Hirsch, J.C. Romao, S. Skadhauge, J.W.F. Valle and A. Villanova del Moral, Phenomenological tests of supersymmetric A 4 family symmetry model of neutrino mass, Phys. Rev. D 69 (2004) 093006 [hep-ph/0312265] [SPIRES].

    ADS  Google Scholar 

  33. E. Ma, A 4 origin of the neutrino mass matrix, Phys. Rev. D 70 (2004) 031901 [hep-ph/0404199] [SPIRES].

    ADS  Google Scholar 

  34. E. Ma, Non-Abelian discrete symmetries and neutrino masses: Two examples, New J. Phys. 6 (2004) 104 [hep-ph/0405152] [SPIRES].

    Article  ADS  Google Scholar 

  35. E. Ma, Non-Abelian discrete family symmetries of leptons and quarks, hep-ph/0409075 [SPIRES].

  36. S.-L. Chen, M. Frigerio and E. Ma, Hybrid seesaw neutrino masses with A 4 family symmetry, Nucl. Phys. B 724 (2005) 423 [hep-ph/0504181] [SPIRES].

    Article  ADS  Google Scholar 

  37. E. Ma, Aspects of the tetrahedral neutrino mass matrix, Phys. Rev. D 72 (2005) 037301 [hep-ph/0505209] [SPIRES].

    ADS  Google Scholar 

  38. M. Hirsch, A. Villanova del Moral, J.W.F. Valle and E. Ma, Predicting neutrinoless double beta decay, Phys. Rev. D 72 (2005) 091301 [Erratum ibid. D 72 (2005) 119904] [hep-ph/0507148] [SPIRES].

    ADS  Google Scholar 

  39. K.S. Babu and X.-G. He, Model of geometric neutrino mixing, hep-ph/0507217 [SPIRES].

  40. E. Ma, Tetrahedral family symmetry and the neutrino mixing matrix, Mod. Phys. Lett. A 20 (2005) 2601 [hep-ph/0508099] [SPIRES].

    ADS  Google Scholar 

  41. A. Zee, Obtaining the neutrino mixing matrix with the tetrahedral group, Phys. Lett. B 630 (2005) 58 [hep-ph/0508278] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  42. X.-G. He, Y.-Y. Keum and R.R. Volkas, A 4 flavour symmetry breaking scheme for understanding quark and neutrino mixing angles, JHEP 04 (2006) 039 [hep-ph/0601001] [SPIRES].

    Article  ADS  Google Scholar 

  43. B. Adhikary, B. Brahmachari, A. Ghosal, E. Ma and M.K. Parida, A 4 symmetry and prediction of U(e3) in a modified Altarelli-Feruglio model, Phys. Lett. B 638 (2006) 345 [hep-ph/0603059] [SPIRES].

    ADS  Google Scholar 

  44. L. Lavoura and H. Kuhbock, Predictions of an A 4 model with a five-parameter neutrino mass matrix, Mod. Phys. Lett. A 22 (2007) 181 [hep-ph/0610050] [SPIRES].

    ADS  Google Scholar 

  45. S.F. King and M. Malinsky, A 4 family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007) 351 [hep-ph/0610250] [SPIRES].

    ADS  Google Scholar 

  46. S. Morisi, M. Picariello and E. Torrente-Lujan, A model for fermion masses and lepton mixing in SO(10) × A 4, Phys. Rev. D 75 (2007) 075015 [hep-ph/0702034] [SPIRES].

    ADS  Google Scholar 

  47. M. Hirsch, A.S. Joshipura, S. Kaneko and J.W.F. Valle, Predictive flavour symmetries of the neutrino mass matrix, Phys. Rev. Lett. 99 (2007) 151802 [hep-ph/0703046] [SPIRES].

    Article  ADS  Google Scholar 

  48. F. Yin, Neutrino mixing matrix in the 3-3-1 model with heavy leptons and A 4 symmetry, Phys. Rev. D 75 (2007) 073010 [arXiv:0704.3827] [SPIRES].

    ADS  Google Scholar 

  49. M. Honda and M. Tanimoto, Deviation from tri-bimaximal neutrino mixing in A 4 flavor symmetry, Prog. Theor. Phys. 119 (2008) 583 [arXiv:0801.0181] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  50. B. Brahmachari, S. Choubey and M. Mitra, The A 4 flavor symmetry and neutrino phenomenology, Phys. Rev. D 77 (2008) 073008 [Erratum ibid. D 77 (2008) 119901] [arXiv:0801.3554] [SPIRES].

    ADS  Google Scholar 

  51. B. Adhikary and A. Ghosal, Nonzero U e3 , CP-violation and leptogenesis in a see-saw type softly broken A 4 symmetric model, Phys. Rev. D 78 (2008) 073007 [arXiv:0803.3582] [SPIRES].

    ADS  Google Scholar 

  52. M. Hirsch, S. Morisi and J.W.F. Valle, Tri-bimaximal neutrino mixing and neutrinoless double beta decay, Phys. Rev. D 78 (2008) 093007 [arXiv:0804.1521] [SPIRES].

    ADS  Google Scholar 

  53. F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton Flavour Violation in Models with A 4 Flavour Symmetry, Nucl. Phys. B 809 (2009) 218 [arXiv:0807.3160] [SPIRES].

    Article  ADS  Google Scholar 

  54. F. Bazzocchi, M. Frigerio and S. Morisi, Fermion masses and mixing in models with SO(10) × A 4 symmetry, Phys. Rev. D 78 (2008) 116018 [arXiv:0809.3573] [SPIRES].

    ADS  Google Scholar 

  55. W. Grimus and L. Lavoura, Tri-bimaximal lepton mixing from symmetry only, JHEP 04 (2009) 013 [arXiv:0811.4766] [SPIRES].

    Article  ADS  Google Scholar 

  56. S. Morisi, Tri-Bimaximal lepton mixing with A 4 semidirect product Z 2 × Z 2 × Z 2, Phys. Rev. D 79 (2009) 033008 [arXiv:0901.1080] [SPIRES].

    ADS  Google Scholar 

  57. P. Ciafaloni, M. Picariello, E. Torrente-Lujan and A. Urbano, Neutrino masses and tribimaximal mixing in Minimal renormalizable SUSY SU(5) Grand Unified Model with A 4 Flavor symmetry, Phys. Rev. D 79 (2009) 116010 [arXiv:0901.2236] [SPIRES].

    ADS  Google Scholar 

  58. M.-C. Chen and S.F. King, A 4 See-Saw Models and Form Dominance, JHEP 06 (2009) 072 [arXiv:0903.0125] [SPIRES].

    Article  ADS  Google Scholar 

  59. G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) Grand Unified Model of Tri-Bimaximal Mixing from A 4, JHEP 03 (2008) 052 [arXiv:0802.0090] [SPIRES].

    Article  ADS  Google Scholar 

  60. Y. Lin, A predictive A 4 model, Charged Lepton Hierarchy and Tri-bimaximal Sum Rule, Nucl. Phys. B 813 (2009) 91 [arXiv:0804.2867] [SPIRES].

    Article  ADS  Google Scholar 

  61. Y. Lin, A dynamical approach to link low energy phases with leptogenesis, Phys. Rev. D 80 (2009) 076011 [arXiv:0903.0831] [SPIRES].

    Google Scholar 

  62. G.C. Branco, R. Gonzalez Felipe, M.N. Rebelo and H. Serodio, Resonant leptogenesis and tribimaximal leptonic mixing with A 4 symmetry, Phys. Rev. D 79 (2009) 093008 [arXiv:0904.3076] [SPIRES].

    ADS  Google Scholar 

  63. M. Hirsch, The neutrino mass matrix and (selected) variants of A 4, Pramana 72 (2009) 183.

    Article  ADS  Google Scholar 

  64. M. Hirsch, S. Morisi and J.W.F. Valle, A 4 -based tri-bimaximal mixing within inverse and linear seesaw schemes, Phys. Lett. B 679 (2009) 454 [arXiv:0905.3056] [SPIRES].

    Google Scholar 

  65. P. Ciafaloni, M. Picariello, A. Urbano and E. Torrente-Lujan, Toward minimal renormalizable SUSY SU(5) Grand Unified Model with tribimaximal mixing from A 4 Flavor symmetry, Phys. Rev. D 81 (2010) 016004 [arXiv:0909.2553] [SPIRES].

    Google Scholar 

  66. B.A. Ovrut, Isotropy Subgroups of SO(3) and Higgs Potentials, J. Math. Phys. 19 (1978) 418 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  67. G. Etesi, Spontaneous Symmetry Breaking in SO(3) Gauge Theory to Discrete Subgroups, J. Math. Phys. 37 (1996) 1596 [hep-th/9706029] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. W. Ledermann, Introduction to group characters, 2nd Edition, Cambridge University Press, Cambridge U.K. (1987).

    Book  MATH  Google Scholar 

  69. C. Luhn and P. Ramond, Anomaly Conditions for Non-Abelian Finite Family Symmetries, JHEP 07 (2008) 085 [arXiv:0805.1736] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Berger.

Additional information

ArXiv ePrint: 0910.4392

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, J., Grossman, Y. Model of leptons from SO(3) → A 4 . J. High Energ. Phys. 2010, 71 (2010). https://doi.org/10.1007/JHEP02(2010)071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2010)071

Keywords

Navigation