×

Curves of steepest descent are entropy solutions for a class of degenerate convection-diffusion equations. (English) Zbl 1293.35149

Summary: We consider a nonlinear degenerate convection-diffusion equation with inhomogeneous convection and prove that its entropy solutions in the sense of Kružkov are obtained as the – a posteriori unique – limit points of the JKO variational approximation scheme for an associated gradient flow in the \(L^2\)-Wasserstein space. The equation lacks the necessary convexity properties which would allow to deduce well-posedness of the initial value problem by the abstract theory of metric gradient flows. Instead, we prove the entropy inequality directly by variational methods and conclude uniqueness by doubling of the variables.

MSC:

35K65 Degenerate parabolic equations
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35L65 Hyperbolic conservation laws

References:

[1] Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. In: Lectures in Mathematics, ETH Zürich, 2nd edn. Birkhäuser, Basel (2008) · Zbl 1145.35001
[2] Bolley, F., Brenier, Y., Loeper, G.: Contractive metrics for scalar conservation laws. J. Hyperbolic Differ. Equ. 2, 91-107 (2005) · Zbl 1071.35081 · doi:10.1142/S0219891605000397
[3] Carrillo, J.: Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147(4), 269-361 (1999) · Zbl 0935.35056 · doi:10.1007/s002050050152
[4] Carrillo, J.A., Di Francesco, M., Lattanzio, C.: Contractivity of wasserstein metrics and asymptotic profiles for scalar conservation laws. J. Differ. Equ. 231, 425-458 (2006) · Zbl 1168.35390 · doi:10.1016/j.jde.2006.07.017
[5] Crandall, G.: The semigroup approach to first-order quasilinear equations in several space variables. Israel J. Math. 12, 108-132 (1972) · Zbl 0246.35018 · doi:10.1007/BF02764657
[6] Dafermos, C.: The entropy rate admissibility criterion for solutions of hyperbolic conservation laws. J. Diff. Equ. 14, 202-212 (1973) · Zbl 0262.35038 · doi:10.1016/0022-0396(73)90043-0
[7] Dafermos, C.M.: Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl. 38, 33-41 (1972) · Zbl 0233.35014 · doi:10.1016/0022-247X(72)90114-X
[8] Dafermos, C.M.: Hyperbolic conservation laws in continuum physics. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325. Springer, Berlin (2000) · Zbl 0940.35002
[9] Daneri, S., Savaré, G.: Eulerian calculus for the displacement convexity in the Wasserstein distance. SIAM J. Math. Anal. 40(3), 1104-1122 (2008) · Zbl 1166.58011 · doi:10.1137/08071346X
[10] De Giorgi, E.: New problems on minimizing movements. In: Boundary Value Problems for Partial Differential Equations and Applications. RMA Research Notes Applied Mathematics, vol. 29, pp. 81-98. Masson, Paris (1993) · Zbl 0851.35052
[11] Dunford, N., Schwartz, J.T.: Linear operators. In: Wiley Classics Library, Part I. Wiley, New York (1988) (General theory, with the assistance of William G. Bade and Robert G. Bartle, reprint of the 1958 original, A Wiley-Interscience Publication) · Zbl 0635.47003
[12] Ethier, S.N., Kurtz, T.G.: Markov processes: characterization and convergence. In: Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986) · Zbl 0592.60049
[13] Friedlander, F.G.: Introduction to the Theory of Distributions. Cambridge University Press, Cambridge (1982) · Zbl 0499.46020
[14] Gigli, N., Otto. F.: Entropic burgers’ equation via a minimizing movement scheme based on the wasserstein metric. Calc. Var. Partial Differ. Equ. 47(1-2), 181-206 (2013) · Zbl 1350.76054
[15] Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1-17 (1998) · Zbl 0915.35120 · doi:10.1137/S0036141096303359
[16] Karlsen, K.H., Ohlberger, M.: A note on the uniqueness of entropy solutions of nonlinear degenerate parabolic equations. J. Math. Anal. Appl. 275, 439-458 (2002) · Zbl 1072.35545 · doi:10.1016/S0022-247X(02)00305-0
[17] Karlsen, K.H., Risebro, N.H.: On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discret. Contin. Dyn. Syst. 9(5), 1081-1104 (2003) · Zbl 1027.35057 · doi:10.3934/dcds.2003.9.1081
[18] Kružkov, S.N.: First order quasilinear equations in serveral independent variables. Math. USSR Sb 10, 217-243 (1970) · Zbl 0215.16203 · doi:10.1070/SM1970v010n02ABEH002156
[19] Kružkov, S.N.: Generalized solutions of the hamilton-jacobi equations of eikonal type. I. Formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions. Math. USSR Sb. 27(3), 406-446 (1975) · Zbl 0369.35012
[20] Lieb, E.H., Loss, M.: Analysis. In: Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (1997) · Zbl 1187.35131
[21] Matthes, D., McCann, R.J., Savaré, G.: A family of nonlinear fourth order equations of gradient flow type. Commun. Partial Differ. Equ. 34(10-12), 1352-1397 (2009) · Zbl 1187.35131 · doi:10.1080/03605300903296256
[22] Otto, \[F.: l^1\] l1-contraction and uniqueness for unstationary saturated-unsaturated porous media flow. Adv. Math. Sci. Appl. 7, 537-553 (1997) · Zbl 0888.35085
[23] Otto, F.: Evolution of microstructure in unstable porous media flow: a relaxational approach. Commun. Pure Appl. Math. 52(7), 873-915 (1999) · Zbl 0929.76136 · doi:10.1002/(SICI)1097-0312(199907)52:7<873::AID-CPA5>3.0.CO;2-T
[24] Otto, F., Westdickenberg, M.: Eulerian calculus for the contraction in the Wasserstein distance. SIAM J. Math. Anal. 37(4):1227-1255 (electronic) (2005) · Zbl 1094.58016
[25] Rossi, R., Savaré, G.: Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5). 2(2):395-431 (2003) · Zbl 1150.46014
[26] Showalter, R.E.: Monotone operators in Banach space and nonlinear partial differential equations. In: Mathematical Surveys and Monographs, vol. 49. American Mathematical Society, Providence (1997) · Zbl 0870.35004
[27] Villani, C.: Topics in optimal transportation. In: Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003) · Zbl 1106.90001
[28] Villani, C.: Optimal transport. Old and new. In: Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009) · Zbl 1156.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.