×

Correlations of the von Mangoldt and higher divisor functions. I. Long shift ranges. (English) Zbl 1426.11107

The paper under review is the first part of authors’ recent investigation on the correlation of the von Mongoldt and higher divisor functions. Both papers concerned with the asymptotic estimation of correlation of the form \(\sum_{X<n\leq 2X}f(n)\overline{g(n+h)}\) where \(f\) and \(g\) taken as von Mongoldt function \(\Lambda\) and higher divisor function \(d_k\) defined by \(d_k(n)=\sum_{n_1\cdots n_k=n}1\), for which estimation of correlations are related to Hardy-Littlewood prime tuples conjecture, divisor correlation conjecture, higher order Titchmarsh divisor problem, and quantitative Goldbach conjecture. More precisely, let \(\sigma=\frac{8}{33}\), \(A>0\), \(0<\varepsilon<\frac{1}{2}\) and \(k,l\geq 2\) be fixed, and suppose that \(X^{\sigma+\varepsilon}\leq H\leq X^{1-\varepsilon}\) for some \(X\geq 2\). Also, let \(0\leq h_0\leq X^{1-\varepsilon}\). In this paper, the authors prove the following results:
(i)
(Related by Hardy-Littlewood prime tuples conjecture) One has \[ \sum_{X<n\leq 2X}\Lambda(n)\Lambda(n+h)=\mathfrak{S}(h)X+O_{A,\varepsilon}(X\log^{-A}X), \] for all but \(O_{A,\varepsilon}(H\log^{-A}X)\) values of \(h\) with \(|h-h_0|\leq H\). The singular series \(\mathfrak{S}(h)\) vanishes if \(h\) is odd, and is to \[ \mathfrak{S}(h)=2\prod_p\left(1-\frac{1}{(p-1)^2}\right)\prod_{p|h:p>2}\frac{p-1}{p-2}, \] when \(h\) is even.
(ii)
(Related by divisor correlation conjecture) For some polynomial \(P_{k,l,h}\) of degree \(k+l-2\) one has \[ \sum_{X<n\leq 2X}d_k(n)d_l(n+h)=P_{k,l,h}(\log X)X+O_{A,\varepsilon,k,l}(X\log^{-A}X), \] for all but \(O_{A,\varepsilon,k,l}(H\log^{-A}X)\) values of \(h\) with \(|h-h_0|\leq H\).
(iii)
(Related by higher order Titchmarsh divisor problem) For some polynomial \(Q_{k,h}\) of degree \(k-1\) one has \[ \sum_{X<n\leq 2X}\Lambda(n)d_k(n+h)=Q_{k,h}(\log X)X+O_{A,\varepsilon,k}(X\log^{-A}X), \] for all but \(O_{A,\varepsilon,k}(H\log^{-A}X)\) values of \(h\) with \(|h-h_0|\leq H\).
(iv)
(Related by Goldbach conjecture) One has \[ \sum_{n}\Lambda(n)\Lambda(N-n)=\mathfrak{S}(N)N+O_{A,\varepsilon}(X\log^{-A}X), \] for all but \(O_{A,\varepsilon}(H\log^{-A}X)\) integers \(N\) in the interval \([X,X+H]\).
The authors end the paper by an appendix providing the proof of a key proposition by using combinatorial decomposition, mean-value theorems and large value theorems for Dirichlet polynomials.

MSC:

11N37 Asymptotic results on arithmetic functions
11N36 Applications of sieve methods

References:

[1] J. C.Andrade, L.Bary‐Soroker and Z.Rudnick, ‘Shifted convolution and the Titchmarsh divisor problem over \(F_q [ t ]\)’, Philos. Trans. A373 (2015) 18. · Zbl 1393.11061
[2] S.Baier, T. D.Browning, G.Marasingha and L.Zhao, ‘Averages of shifted convolutions of \(d_3 ( n )\)’, Proc. Edinb. Math. Soc. (2) 55 (2012) 551-576. · Zbl 1264.11083
[3] R. C.Baker, G.Harman and J.Pintz, ‘The exceptional set for Goldbach’s problem in short intervals’, Sieve methods, exponential sums, and their applications in number theory (Cardiff, 1995), London Mathematical Society Lecture Note Series 237 (Cambridge University Press, Cambridge, 1997) 1-54. · Zbl 0929.11042
[4] A.Balog, ‘The prime \(k\)‐tuplets conjecture on average’, Analytic number theory (Allerton Park, IL, 1989), Progress in Mathematics 85 (Birkhäuser Boston, Boston, MA, 1990) 47-75. · Zbl 0719.11066
[5] E.Bombieri, J. B.Friedlander and H.Iwaniec, ‘Primes in arithmetic progressions to large moduli’, Acta Math.156 (1986) 203-251. · Zbl 0588.10042
[6] V. A.Bykovskiǐ and A. I.Vinogradov, ‘Inhomogeneous convolutions’, Anal. Teor. Chisel i Teor. Funktsii., 8, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 160 (Leningrad. Otdel., Leningrad, 1987) 16-30. · Zbl 0631.10030
[7] W.Castryck, É.Fouvry, G.Harcos, E.Kowalski, P.Michel, P.Nelson, E.Paldi, J.Pintz, A.Sutherland, T.Tao and X.Xie, ‘New equidistribution estimates of Zhang type’, Algebra Number Theory8 (2014) 2067-2199. · Zbl 1307.11097
[8] J.Chen and C.Pan, ‘The exceptional set of Goldbach numbers’, Sci. Sinica23 (1980) 416-430. · Zbl 0439.10034
[9] J. B.Conrey and S. M.Gonek, ‘High moments of the Riemann zeta‐function’, Duke Math. J.107 (2001) 577-604. · Zbl 1006.11048
[10] J. G.van der Corput, ‘Sur l’hypotheése de Goldbach pour presque tous les nombres premiers’, Acta Arith.2 (1937) 266-290. · JFM 63.0901.02
[11] H.Davenport, Multiplicative number theory, 3rd edn, Revised and with a rpeface by Hugh L. Montgomery, Graduate Texts in Mathematics 74 (Springer, New York, 2000). · Zbl 1002.11001
[12] J.‐M.Deshouillers, Majorations en moyenne de sommes de Kloosterman, Seminar on Number Theory, 1981/1982 (University of Bordeaux I, Talence, 1982) 5.
[13] J.‐M.Deshouiller and H.Iwaniec, ‘An additive divisor problem’, J. Lond. Math. Soc. (2) 26 (1982) 1-14. · Zbl 0462.10030
[14] S.Drappeau, ‘Sums of Kloosterman sums in arithmetic progressions, and the error term in the dispersion method’, Proc. Lond. Math. Soc.114 (2017) 684-732. · Zbl 1392.11059
[15] T.Estermann, ‘Über die Darstellungen einer Zahl als Differenz von zwei Produkten’, J. reine angew. Math.164 (1931) 173-182. · Zbl 0001.20302
[16] T.Estermann, ‘On Goldbach’s problem: proof that almost all even positive integers are sums of two primes’, Proc. Lond. Math. Soc. (2) 44 (1938) 307-314. · JFM 64.0126.05
[17] D.Fiorilli, ‘Residue classes containing an unexpected number of primes’, Duke Math. J.161 (2012) 2923-2943. · Zbl 1264.11081
[18] É.Fouvry, ‘Sur le probléme des diviseurs de Titchmarsh’, J. reine angew. Math.357 (1985) 51-76. · Zbl 0547.10039
[19] É.Fouvry and G.Tenenbaum, ‘Sur la corrélation des fonctions de Piltz’, Rev. Mat. Iberoam.1 (1985) 43-54. · Zbl 0599.10035
[20] P. X.Gallagher, ‘A large sieve density estimate near \(\sigma = 1\)’, Invent. Math.11 (1970) 329-339. · Zbl 0219.10048
[21] P. X.Gallagher, ‘On the distribution of primes in short intervals’, Mathematika23 (1976) 4-9. · Zbl 0346.10024
[22] S. W.Graham and G.Kolesnik, Van der Corput’s method for exponential sums, Mathematical Society Lecture Notes 126 (Cambridge University Press, London, 1991). · Zbl 0713.11001
[23] G. H.Hardy and J. E.Littlewood, ‘Some problems of ’Partitio Numerorum.’ III. On the expression of a number as a sum of primes’, Acta Math.44 (1923) 1-70. · JFM 48.0143.04
[24] G.Harman, Prime‐detecting sieves, London Mathematical Society Monographs 33 (London Mathematical Society, London, 2007). · Zbl 1220.11118
[25] D. R.Heath‐Brown, ‘The fourth power moment of the Riemann zeta‐function’, Proc. Lond. Math. Soc.3 (1979) 385-422. · Zbl 0403.10018
[26] D. R.Heath‐Brown, ‘Prime numbers in short intervals and a generalized Vaughan identity’, Canad. J. Math.34 (1982) 1365-1377. · Zbl 0478.10024
[27] D. R.Heath‐Brown, ‘Prime twins and Siegel zeros’, Proc. Lond. Math. Soc. (3) 47 (1983) 193-224. · Zbl 0517.10044
[28] K.Henriot, ‘Nair‐Tenenbaum bounds uniform with respect to the discriminant’, Math. Proc. Cambridge Philos. Soc.152 (2012) 405-424. · Zbl 1255.11048
[29] K.Henriot, ‘Nair‐Tenenbaum uniform with respect to the discriminant — erratum’, Math. Proc. Cambridge Philos. Soc.157 (2014) 375-377. · Zbl 1304.11112
[30] A. E.Ingham, ‘Mean‐value theorems in the theory of the Riemann zeta function’, Proc. Lond. Math. Soc. (2) 27 (1926) 273-300. · JFM 53.0313.01
[31] A. E.Ingham, ‘Some asymptotic formulae in the theory of numbers’, J. Lond. Math. Soc.S1-S2 (1927) 202. · JFM 53.0157.01
[32] A.Ivić, ‘On the ternary additive divisor problem and the sixth moment of the zeta‐function’, Sieve methods, exponential sums, and their applications in number theory (Cardiff, 1995), London Mathematical Society Lecture Note Series 237 (Cambridge University Press, Cambridge, 1997) 205-243. · Zbl 0924.11069
[33] A.Ivić, The general additive divisor problem and moments of the zeta‐function, New Trends in Probability and Statistics 4 (VSP, Utrecht, 1997) 69-89. · Zbl 0924.11070
[34] A.Ivić and J.Wu, ‘On the general additive divisor problem’, Tr. Mat. Inst. Steklova276 (2012) 146-154; Reprinted in Proc. Steklov Inst. Math. 276 (2012) 140-148. · Zbl 1297.11124
[35] H.Iwaniec, Fourier coefficients of cusp forms and the Riemann zeta‐function, Seminar on Number Theory, 1979-1980 (French) (University of Bordeaux I, Talence, 1980) 36. · Zbl 0438.10030
[36] H.Iwaniec and E.Kowalski, Analytic number theory, Colloquium Publications 53 (American Mathematical Society, Providence, RI, 2004). · Zbl 1059.11001
[37] C. H.Jia, ‘On the exceptional set of Goldbach numbers in short intervals’, Acta Arith.77 (1996) 207-287. · Zbl 0863.11066
[38] M.Jutila, ‘Mean value estimates for exponential sums with applications to L‐functions’, Acta Arith.57 (1991) 93-114. · Zbl 0718.11038
[39] K.Kawada, ‘The prime k‐tuplets in arithmetic progressions’, Tsukuba J. Math.17 (1993) 43-57. · Zbl 0797.11076
[40] N. V.Kuznetsov, ‘Convolution of the Fourier coefficients of the Eisenstein‐Maass Series’, Zap. Nauchn. Semin. LOMI129 (1983) 4384 [J. Sov. Math. 29 (1985) 1131-1159]. · Zbl 0496.10013
[41] B.Landreau, ‘A new proof of a theorem of van der Corput’, Bull. Lond. Math. Soc.21 (1989) 366-368. · Zbl 0677.10031
[42] A. F.Lavrik, ‘On the twin prime hypothesis of the theory of primes by the method of I.M. Vinogradov’, Dokl. Akad. Nauk SSSR132 (1960) 1013-1015; Soy. Math. Dokl. 1 (1960) 700-702. · Zbl 0097.03104
[43] H.Li, ‘The exceptional set of Goldbach numbers II’, Acta Arith.92 (2000) 71-88. · Zbl 0963.11057
[44] Ju. V.Linnik, The dispersion method in binary additive problems, Translations of Mathematical Monographs 4 (American Mathematical Society, Providence, RI, 1963). · Zbl 0112.27402
[45] W. C.Lu, ‘Exceptional set of Goldbach number’, J. Number Theory130 (2010) 2359-2392. · Zbl 1261.11067
[46] S. T.Luo and Q.Yao, ‘The exceptional set of Goldbach’s problem in a short interval (Chinese)’, Acta Math. Sinica24 (1981) 269-282. · Zbl 0472.10049
[47] K.Matomäki, ‘On the exceptional set in Goldbach’s problem in short intervals’, Monatsh. Math.155 (2008) 167-189. · Zbl 1167.11035
[48] K.Matomäki and M.Radziwiłł, ‘Multiplicative functions in short intervals’, Ann. of Math. (2) 183 (2016) 1015-1056. · Zbl 1339.11084
[49] K.Matomäki and M.Radziwiłł, ‘A note on the Liouville function in short intervals’, Preprint, arxiv:1502.02374.
[50] K.Matomäki and M.Radziwiłł and T.Tao, ‘An averaged form of Chowla’s conjecture’, Algebra Number Theory9 (2015) 2167-2196. · Zbl 1377.11109
[51] K.Matomäki and M.Radziwiłł and T.Tao, ‘Correlations of the von Mangoldt and higher divisor functions II. Divisor correlations in short ranges’, Preprint, arXiv:1712.08840. · Zbl 1416.11138
[52] L.Matthiesen, ‘Correlations of the divisor function’, Proc. Lond. Math. Soc. (3) 104 (2012) 827-858. · Zbl 1294.11168
[53] L.Matthiesen, ‘Linear correlations of multiplicative functions’, Preprint, arXiv:1606.04482. · Zbl 1459.11187
[54] T.Meurman, ‘On the binary additive divisor problem’, Number theory (Turku, 1999) (de Gruyter, Berlin, 2001) 223-246. · Zbl 0967.11039
[55] H.Mikawa, ‘On prime twins’, Tsukuba J. Math.15 (1991) 19-29. · Zbl 0735.11041
[56] H.Montgomery, ‘The analytic principle of the large sieve’, Bull. Amer. Math. Soc.84 (1978) 547-567. · Zbl 0408.10033
[57] H.Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS Regional Conference Series in Mathematics 84 (American Mathematical Society, Providence, RI, 1994). · Zbl 0814.11001
[58] H.Montgomery and R.Vaughan, ‘The exceptional set in Goldbach’s problem’, Acta Arith.27 (1975) 353-370. · Zbl 0301.10043
[59] H.Montgomery and R.Vaughan, Multiplicative number theory I. Classical theory, Cambridge Studied in Advanced Mathematics 97 (Cambridge University Press, Cambridge, 2007). · Zbl 1142.11001
[60] Y.Motohashi, ‘On some additive divisor problems’, J. Math. Soc. Japan28 (1976) 772-784. · Zbl 0328.10033
[61] Y.Motohashi, ‘On some additive divisor problems. II’, Proc. Japan Acad. (6) 52 (1976) 279-281. · Zbl 0364.10022
[62] Y.Motohashi, ‘An asymptotic series for an additive divisor problem’, Math. Z.170 (1980) 43-63. · Zbl 0411.10021
[63] Y.Motohashi, ‘The binary additive divisor problem’, Ann. Sci. Éc. Norm. Supér.27 (1994) 529-572. · Zbl 0819.11038
[64] M.Nair, ‘Multiplicative functions of polynomial values in short intervals’, Acta Arith.62 (1992) 257-269. · Zbl 0768.11038
[65] M.Nathanson, Additive number theory. The classical bases, Graduate Texts in Mathematics 164 (Springer, New York, 1996). · Zbl 0859.11002
[66] N.Ng and M.Thom, ‘Bounds and conjectures for additive divisor sums’, Preprint, arXiv:1609.01411v1. · Zbl 1443.11186
[67] T. P.Peneva, ‘On the exceptional set for Goldbach’s problem in short intervals’, Monatsh. Math.132 (2001) 49-65. · Zbl 0974.11037
[68] A.Perelli and J.Pintz, ‘On the exceptional set for Goldbach’s problem in short intervals’, J. Lond. Math. Soc. (2) 47 (1993) 41-49. · Zbl 0806.11042
[69] K.Ramachandra, ‘A simple proof of the mean fourth power estimate for \(\zeta ( 1 / 2 + i t )\) and \(L ( 1 / 2 + i t , \chi )\)’, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 1 (1974) 81-97. · Zbl 0305.10036
[70] O.Robert, ‘On the fourth derivative test for exponential sums’, Forum Math.28 (2016) 403-404. · Zbl 1408.11084
[71] O.Robert and P.Sargos, ‘Three‐dimensional exponential sums with monomials’, J. reine angew. Math.591 (2006) 1-20. · Zbl 1165.11067
[72] N. G.Tchudakov, ‘Sur le probléme de Goldbach’, C. R. (Dokl.) Acad. Sci. URSS17 (1937) 335-338. · Zbl 0018.00603
[73] B.Topacogullari, ‘The shifted convolution of divisor functions’, Q. J. Math.67 (2016) 331-363. · Zbl 1356.11070
[74] B.Topacogullari, ‘The shifted convolution of generalized divisor functions’, Preprint, arXiv:1605.02364. · Zbl 1378.11004
[75] A. I.Vinogradov, ‘The \(S L_n\)‐technique and the density hypothesis (in Russian)’, Zap. Naučn. Sem. LOMI AN SSSR168 (1988) 5-10. · Zbl 0691.10033
[76] D.Wolke, ‘Über das Primzahl‐Zwillingsproblem’, Math. Ann.283 (1989) 529-537. · Zbl 0646.10033
[77] Q.Yao, ‘The exceptional set of Goldbach numbers in a short interval (Chinese)’, Acta Math. Sinica25 (1982) 315-322. · Zbl 0494.10037
[78] A.Zaccagnini, ‘Primes in almost all short intervals’, Acta Arith.84 (1998) 225-244. · Zbl 0895.11035
[79] T.Zhan, ‘On the representation of large odd integer as a sum of three almost equal primes’, Acta Math. Sinica (N.S.)7 (1991) 259-272. · Zbl 0742.11048
[80] Y.Zhang, ‘Bounded gaps between primes’, Ann. of Math. (2) 179 (2014) 1121-1174. · Zbl 1290.11128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.