×

Linear correlations of multiplicative functions. (English) Zbl 1459.11187

The paper under review deals with asymptotic formulas for sums of the shape \[\sum_{n \in \mathbb{Z}^s \cap N \mathfrak{K}} h_1 \left( P_1 (\mathbf{n}) \right) \dotsb h_r \left( P_r (\mathbf{n}) \right)\] where \(r,s \in \mathbb{Z}_{\geqslant 2}\), \(\mathfrak{K} \subset \mathbb{R}^s\) is a fixed bounded convex subset, \(N \mathfrak{K}:= \left\lbrace N \mathbf{x} \in \mathbb{R}^s : \mathbf{x} \in \mathfrak{K} \right\rbrace\), \(P_1,\dotsc,P_r \in \mathbb{Z} \left[ X_1,\dotsc,X_s\right]\) are fixed linear polynomial satisfying the property that the non-constant parts of any two of these polynomials are pairwise linearly independent, and \(h_1,\dotsc,h_r\) belong to a large class of multiplicative functions satisfying the Ramanujan hypothesis \(h_j (n) \ll n^\varepsilon\), and containing the usual arithmetic functions \(\tau_k\), \(k^{\omega}\) with \(0 < k < 2\), \(\left| \lambda_f \right|\) where \(\lambda_f\) is the normalised Fourier coefficients of a primitive holomorphic cusp form, etc. The results are too complicated to be stated here, but it should be mentioned that the proof proceeds via Green and Tao’s nilpotent Hardy-Littlewood method [B. Green and T. Tao, Ann. Math. (2) 171, No. 3, 1753–1850 (2010; Zbl 1242.11071)]. Simplified versions of the main theorems are also given.

MSC:

11N37 Asymptotic results on arithmetic functions

Citations:

Zbl 1242.11071

References:

[1] A.Balog, A.Granville and K.Soundararajan, ‘Multiplicative functions in arithmetic progressions’, Ann. Math. Qué.37 (2013) 3-30. · Zbl 1306.11078
[2] V.Blomer, ‘On triple correlations of divisor functions’, Bull. Lond. Math. Soc.49 (2017) 10-22. · Zbl 1434.11200
[3] T. D.Browning, ‘The divisor problem for binary cubic forms’, J. Théor. Nombres Bordeaux23 (2011) 579-602. · Zbl 1271.11091
[4] T. D.Browning and L.Matthiesen, ‘Norm forms for arbitrary number fields as products of linear polynomials’, Ann. Sci. Éc. Norm. Supér.50 (2017) 1375-1438.
[5] S.Daniel, ‘Uniform bounds for short sums of certain arithmetic functions of polynomial arguments’, Unpublished manuscript.
[6] P. D. T. A.Elliott, ‘Multiplicative function mean values: asymptotic estimates’, Funct. Approx. Comment. Math.56 (2017) 217-238. · Zbl 1427.11092
[7] P. D. T. A.Elliott and J.Kish, ‘Harmonic analysis on the positive rationals II: multiplicative functions and maass forms’, J. Math. Sci. Univ. Tokyo23 (2016) 615-658. · Zbl 1414.11118
[8] P.Erdős, ‘On the sum \(\sum_{k = 1}^x d ( f ( k ) )\)’, J. Lond. Math. Soc.27 (1952) 7-15. · Zbl 0046.04103
[9] N.Frantzikinakis and B.Host, ‘Asymptotics for multilinear averages of multiplicative functions’, Math. Proc. Cambridge Philos. Soc.161 (2016) 87-101. · Zbl 1371.11134
[10] A.Granville, A. J.Harper and K.Soundararajan, ‘A new proof of Halász’s theorem, and its consequence’, Compos. Math.155 (2019) 126-163. · Zbl 1443.11200
[11] A.Granville and K.Soundararajan, Multiplicative number theory, https://dms.umontreal.ca/ andrew/PDF/BookChaps1n2.pdf. · Zbl 0935.11033
[12] B. J.Green and T. C.Tao, ‘The primes contain arbitrarily long arithmetic progressions’, Ann. of Math.167 (2008) 481-547. · Zbl 1191.11025
[13] B. J.Green and T. C.Tao, ‘Linear equations in primes’, Ann. of Math.171 (2010) 1753-1850. · Zbl 1242.11071
[14] B. J.Green and T. C.Tao, ‘The Möbius function is strongly orthogonal to nilsequences’, Ann. of Math. (2)175 (2012) 541-566. · Zbl 1347.37019
[15] B. J.Green, T. C.Tao and T.Ziegler, ‘An inverse theorem for the Gowers \(U_{s + 1} [ N ]\)‐norm’, Ann. of Math. (2)176 (2012) 1231-1372. · Zbl 1282.11007
[16] G.Halász, ‘Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen’, Acta Math. Acad. Sci. Hung.19 (1968) 365-403. · Zbl 0165.05804
[17] K.Henriot, ‘Nair‐Tenenbaum bounds uniform with respect to the discriminant’, Math. Proc. Cambridge Philos. Soc.152 (2012) 405-424. · Zbl 1255.11048
[18] H.Iwaniec and E.Kowalski, Analytic number theory, Colloquium Publications 53 (American Mathematical Society, Providence, RI, 2004). · Zbl 1059.11001
[19] O.Klurman, ‘Correlations of multiplicative functions and applications’, Compos. Math.153 (2017) 1622-1657. · Zbl 1434.11202
[20] O.Klurman and A. P.Mangerel, ‘Effective asymptotic formulae for multilinear averages of multiplicative functions’, Preprint, arXiv:1708.03176.
[21] A.Lachand, ‘On the representation of friable integers by linear forms’, Acta Arith.181 (2017) 97-109. · Zbl 1429.11180
[22] E.Landau, ‘Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate’, Arch. Math. Phys.13 (1908) 305-312. · JFM 39.0264.03
[23] A. P.Mangerel, ‘A strengthening of theorems of Halász and Wirsing’, Preprint, arXiv:1604.00295.
[24] K.Matomäki, M.Radziwiłł and T.Tao, ‘Correlations of the von Mangoldt and higher divisor functions I. Long shift ranges’, Proc. Lond. Math. Soc.118 (2019) 284-350. · Zbl 1426.11107
[25] L.Matthiesen, ‘Linear correlations amongst numbers represented by positive definite binary quadratic forms’, Acta Arith.154 (2012) 235-306. · Zbl 1294.11169
[26] L.Matthiesen, ‘Correlations of the divisor function’, Proc. Lond. Math. Soc.104 (2012) 827-858. · Zbl 1294.11168
[27] L.Matthiesen, ‘Correlations of representation functions of binary quadratic forms’, Acta Arith.158 (2013) 245-252. · Zbl 1294.11170
[28] L.Matthiesen, ‘Generalized Fourier coefficients of multiplicative functions’, Algebra Number Theory12 (2018) 1311-1400. · Zbl 1444.11201
[29] M.Nair, ‘Multiplicative functions of polynomial values in short intervals’, Acta Arith.62 (1992) 257-269. · Zbl 0768.11038
[30] M.Nair and G.Tenenbaum, ‘Short sums of certain arithmetic functions’, Acta Math.180 (1998) 119-144. · Zbl 0917.11048
[31] P.Shiu, ‘A Brun-Titchmarsh theorem for multiplicative functions’, J. reine angew. Math.313 (1980) 161-170. · Zbl 0412.10030
[32] G.Tenenbaum, ‘Moyennes effectives de fonctions multiplicatives complexes’, Ramanujan J.44 (2017) 641-701. · Zbl 1426.11113
[33] D.Wolke, ‘Multiplikative Funktionen auf schnell wachsenden Folgen’, J. reine angew. Math.251 (1971) 54-67. · Zbl 0234.10030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.