×

Analytic deviation of ideals and intersection theory of analytic spaces. (English) Zbl 0802.32017

Let \(X\) be a complex space and \(Z\) a closed complex subspace defined by a sheaf \(I\). For \(x\in Z\) the authors consider the analytic spread \(s(I_ x)\), the height \(ht(I_ x)\) and the analytic deviation \(s(I_ x)- ht(I_ x)\). They show that \(Z\) is stratified by the analytic subsets \[ {\mathcal G}_ n(Z,X):= \{x\in Z: s(I_ x)- ht(I_ x)\geq n\}. \] The stratification is used to define embedded intersection components for an intersection of complex subspaces. The authors make a construction which enables them to define an intersection multiplicity for such components. In the case of projective spaces one gets relations to investigations of Fulton and Stückrad-Vogel.
The technics of the authors are these of commutative algebra and semianalytic Stein compacta.

MSC:

32C25 Analytic subsets and submanifolds
14C17 Intersection theory, characteristic classes, intersection multiplicities in algebraic geometry
32B05 Analytic algebras and generalizations, preparation theorems

References:

[1] R. Achilles and D. Aliffi. On the computation of the Stfickrad-Vogel intersection cycle by analytic spread and minimal reductions.Bull. Soc. Math. Belg. (1993), to appear · Zbl 0814.14005
[2] Achilles, R.; Manaresi, M., Multiplicities for improper intersections of analytic subsets, (ACGA) Rend. Sem. Mat. Univ. Politec. Torino, 48, 539-552 (1990) · Zbl 0785.32005
[3] Achilles, R.; Manaresi, M., An algebraic characterization of distinguished varieties of intersection, Rev. Roumaine Math. Pures Appl., 38, 7-8 (1993) · Zbl 0807.14003
[4] R. Achilles and M. Manaresi. Multiplicity for ideals of maximal analytic spread and intersection theory. Preprint, University of Bologna and Halle, 1992 · Zbl 0816.13019
[5] Achilles, R.; Schenzel, P.; Vogel, W., Bemerkungen fiber normale Flachheit und normale Torsionsfreiheit und Anwendungen, Period. Math. Hungar., 12, 49-75 (1981) · Zbl 0431.13007 · doi:10.1007/BF01848171
[6] Daepp, U.; Evans, A., A note on Buchsbaum rings and localizations of graded domains, Canad. J. Math., 32, 1244-1249 (1980) · Zbl 0463.13013
[7] Fischer, G., Complex analytic geometry, Lecture Notes in Math., Vol. 538 (1976), Berlin-Heidelberg-New York: Springer-Verlag, Berlin-Heidelberg-New York · Zbl 0343.32002
[8] Frisch, J., Points de platitude d’un morphisme d’espaces analytiques complexes, Invent. Math., 4, 118-138 (1967) · Zbl 0167.06803 · doi:10.1007/BF01425245
[9] Fulton, W., Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 2 (1984), Berlin-Heidelberg-New York: Springer-Verlag, Berlin-Heidelberg-New York · Zbl 0541.14005
[10] van Gastel, L. J., Excess intersections and a correspondence principle, Invent. Math., 103, 197-221 (1991) · Zbl 0733.14002 · doi:10.1007/BF01239512
[11] van Gastel, L. J., Excess intersections (1989), The Netherlands: Univ. of Utrecht, The Netherlands
[12] Greco, S.; Traverso, C., On seminormal schemes, Compositio Math., 40, 325-365 (1980) · Zbl 0412.14024
[13] Hartshorne, R., Complete intersections and connectedness, Amer. J. Math., 84, 497-508 (1962) · Zbl 0108.16602 · doi:10.2307/2372986
[14] Herrmann, M.; Ikeda, S.; Orbanz, U., Equimultiplicity and blowing up. An algebraic study. With an appendix by B. Moonen (1988), Berlin-Heidelberg-New York: Springer-Verlag, Berlin-Heidelberg-New York · Zbl 0649.13011
[15] Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math., 79, 2, 109-326 (1964) · Zbl 0122.38603 · doi:10.2307/1970486
[16] Hironaka, H., Normal cones in analytic Whitney stratifications, Pnbl. IHES, 36, 127-138 (1969) · Zbl 0219.57022
[17] Huckaba, S.; Huneke, C., Powers of ideals having small analytic deviation, Amer. J. Math., 114, 367-403 (1992) · Zbl 0758.13001 · doi:10.2307/2374708
[18] Idà, M.; Manaresi, M., On the branches of a complex space, J. Reine Angew. Math., 321, 173-178 (1981) · Zbl 0437.14020
[19] Idà, M.; Manaresi, M., Some remarks on normal flatness and multiplicity in complex spaces, Commutative Algebra (Trento, 1981), 171-182 (1983), New York: Dekker, New York · Zbl 0508.32002
[20] Matsumura, H., Commutative ring theory, Cambridge Studies in Advanced Mathematics 8 (1986), New York: Cambridge University Press, New York · Zbl 0603.13001
[21] Northcott, D. G.; Rees, D., Reductions of ideals in local rings, Math. Proc. Cambridge Philos. Soc., 50, 145-158 (1953) · Zbl 0057.02601 · doi:10.1017/S0305004100029194
[22] Rees, D., A note on form rings and ideals, Mathematika, 4, 51-60 (1957) · Zbl 0089.26003 · doi:10.1112/S002557930000108X
[23] Serre, J.-P., Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier (Grenoble), 6, 1-42 (1956) · Zbl 0075.30401
[24] Shafarevich, I. R., Basic algebraic geometry (1977), Berlin-Heidelberg-New York: Springer-Verlag, Berlin-Heidelberg-New York · Zbl 0362.14001
[25] Vogel, W.; Patil, D. P., Lectures on results on Bezout’s theorem, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 74 (1984), Berlin-Heidelberg-New York: Springer-Verlag, Berlin-Heidelberg-New York · Zbl 0553.14022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.