×

Discrete-space time-fractional processes. (English) Zbl 1312.60040

Summary: A time-fractional diffusion process defined in a discrete probability setting is studied. Working in continuous time, the infinitesimal generators of random processes are discretized and the diffusion equation generalized by allowing the time derivative to be fractional, i.e. of non-integer order. The properties of the resulting distributions are studied in terms of the Mittag-Leffler function. We discuss the computation of these distribution functions by deriving new global rational approximations for the Mittag-Leffler function that account for both its initial Taylor series and asymptotic power-law tail behaviours. Furthermore, we derive integral representations for both the continuous and the discrete time-fractional distributions and use these to prove a convergence theorem.

MSC:

60G22 Fractional processes, including fractional Brownian motion
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
33E12 Mittag-Leffler functions and generalizations

Software:

MATLAB expm; ma2dfc
Full Text: DOI

References:

[1] C. Albanese and A. Mijatovic, Convergence rates for diffusions on continuous-time lattices. Working paper, 2006.;
[2] W.J. Anderson, Continous-time Markov Chains. Springer, 1991.;
[3] C. Atkinson and A. Osseiran, Rational solutions for the time-fractional diffusion equation. SIAM J. Appl. Math., 71 (2011), 92-106. http://dx.doi.org/10.1137/100799307; · Zbl 1222.26011
[4] L. Boyadjiev, S.L. Kalla, and H.G. Khajah. Analytic and numerical treatment of a fractional integro-differential equation of Volterra type, Math. Comput. Model., 25 (1997), 1-9. http://dx.doi.org/10.1016/S0895-7177(97)00090-3; · Zbl 0932.45012
[5] M. Caputo, Linear models of dissipation whose Q is almost frequency independent, Part II. Geophys. Journal Royal Astronomic Soc., 13 (1967), 529-539 (Reprinted in: Fract. Calc. Appl. Anal., 11, No 1 (2008), 3-14).; · Zbl 1210.65130
[6] M.C. Cartwright, Integral Functions. Cambridge Tracts in Mathematics and Mathematical Physics, No 44, Cambridge Univ. Press, 1956.; · Zbl 0075.05901
[7] A.A. Chikrii and S.D. Eidel’man, Generalized Mittag-Leffler matrix functions in game problems for evolutionary equations of fractional order. J. of Cybernetics and Systems Analysis, 36, No 3 (2000), 315-338. http://dx.doi.org/10.1007/BF02732983; · Zbl 1007.91010
[8] K.L. Chung, Markov Chains with Stationary Transition Probabilities. Springer-Verlag, Berlin, Second edition, 1967.; · Zbl 0146.38401
[9] K. Diethelm, The Analysis of Fractional Differential Equations. Springer-Verlag, Berlin-Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14574-2; · Zbl 1215.34001
[10] K. Diethelm and N.J. Ford, Numerical solution methods for distributed order differential equations. Fract. Calc. Appl. Anal., 4 (2001), 531-542.; · Zbl 1032.65070
[11] K. Diethelm and Yu. Luchko. Numerical solution of linear multiterm initial value problems of fractional order. Comput. Methods of Numerical Analysis, 6 (2004), 243-263.; · Zbl 1083.65064
[12] A. Erdèlyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi. Higher Transcendental Functions, Bateman Project, Volume 3. McGraw-Hill, New York, 1955.; · Zbl 0064.06302
[13] W. Feller. Fluctuation theory of recurrent events, Trans. Amer. Math. Soc., 67 (1949), 98-119. http://dx.doi.org/10.1090/S0002-9947-1949-0032114-7; · Zbl 0039.13301
[14] W. Feller. An Introduction to Probability Theory and Its Applications, Volume 2. Wiley, New York, Second Edition, 1971.; · Zbl 0219.60003
[15] A. Freed, K. Diethelm, and Yu. Luchko. Fractional-order viscoelasticity (FOV): Constitutive development using the fractional calculus. First Annual Report, NASA/TM-2002-211914, Gleen Research Center.;
[16] R. Gorenflo and E.A. Abdel-Rehim. Convergence of the Grunwald-Letnikov scheme for time-fractional diffusion. Journal of Comput. and Appl. Mathematics, 205, No 2 (2007), 871-881. http://dx.doi.org/10.1016/j.cam.2005.12.043; · Zbl 1127.65100
[17] R. Gorenflo, J. Loutchko, and Yu. Luchko. Computation of the Mittag-Leffler function Eα,β(z) and its derivatives. Fract. Calc. Appl. Anal., 5, No 4 (2002), 491-518.; · Zbl 1027.33016
[18] R. Gorenflo and F. Mainardi. Some recent advances in theory and simulation of fractional diffusion processes. Journal of Comput. and Appl. Mathematics, 229, No 2 (2009), 400-415. http://dx.doi.org/10.1016/j.cam.2008.04.005; · Zbl 1166.45004
[19] G.R. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford University Press, Third edition, 2001.; · Zbl 1015.60002
[20] N.J. Higham. The scaling and squaring method for the matrix exponential revisited. SIAM Journal on Matrix Anal. and Appl., 26, No 4 (2005), 1179-1193. http://dx.doi.org/10.1137/04061101X; · Zbl 1081.65037
[21] T. Kaczorek. Fractional positive continuous-time linear systems and their reachability. Int. J. Appl. Math. Comput. Sci., 18, No 2 (2008), 223-228. http://dx.doi.org/10.2478/v10006-008-0020-0; · Zbl 1235.34019
[22] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo. Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, 2006.; · Zbl 1092.45003
[23] V. Kiryakova. Generalized Fractional Calculus and Applications. Longman Sc. and Tech. & J. Wiley, Harlow - N. York, 1994.; · Zbl 0882.26003
[24] V. Kiryakova. The multi-index Mittag-Leffler functions as important class of special functions of fractional calculus. Computers and Math. with with Appl., 59, No 5 (2010), 1885-1895, doi:10.1016/j.camwa.2009.08.025. http://dx.doi.org/10.1016/j.camwa.2009.08.025; · Zbl 1189.33034
[25] A.N. Kochubei. A Cauchy problem for evolution equations of fractional order. Differential Equations, 25(1989), 967-974.; · Zbl 0696.34047
[26] H. Kushner and P. Dupuis. Numerical Methods for Stochastic Control Problems in Continuous Time. Springer, 2001.; · Zbl 0968.93005
[27] Yumin Lin and Chuanju Xu. Finite difference/spectral approximations for the time-fractional diffusion equation. Journal of Computational Physics, 225 (2007), 1533-1552. http://dx.doi.org/10.1016/j.jcp.2007.02.001; · Zbl 1126.65121
[28] Ch. Lubich. Discretized fractional calculus. SIAM Journal on Math. Anal., 17, No 3 (1986), 704-719. http://dx.doi.org/10.1137/0517050; · Zbl 0624.65015
[29] F. Mainardi. Applications of integral transforms in fractional diffusion processes. Integr. Transf. Spec. Funct., 15, No 6 (2004), 477-484. http://dx.doi.org/10.1080/10652460412331270652; · Zbl 1093.45003
[30] F. Mainardi, Yu. Luchko, and G. Pagnini. The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal., 4, No 2 (2001), 153-192.; · Zbl 1054.35156
[31] F. Mainardi and R. Gorenflo. Time-fractional derivatives in relaxation processes: A tutorial survey. Frac. Calc. Appl. Anal., 10, No 3 (2007), 269-308.; · Zbl 1157.26304
[32] A.C. McBride. Fractional Calculus and Integral Transforms of Generalized Functions. Pitman Press, San Francisco, 1979.; · Zbl 0423.46029
[33] A.C. McBride and G. Roach. Fractional Calculus. Research Notes in Mathematics, Vol. 138, Pitman, Boston-London-Melbourne, 1985.; · Zbl 0595.00008
[34] K.S. Miller and B. Ross. An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley, New York, 1993.; · Zbl 0789.26002
[35] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review, 45, No 1 (2003), 3-30. http://dx.doi.org/10.1137/S00361445024180; · Zbl 1030.65029
[36] B. Øksendal. Stochastic Differential Equations. Springer, Sixth edition, 2003.; · Zbl 1025.60026
[37] K.B. Oldham and J. Spanier. The Fractional Calculus. Academic Press, New York, 1974.; · Zbl 0292.26011
[38] E. Platen. Higher order weak approximation of Itô diffusions by Markov chains. Probability in the Engineering and Information Sci., 6 (1992), 391-408. http://dx.doi.org/10.1017/S0269964800002606; · Zbl 1134.60357
[39] I. Podlubny. Fractional Differential Equations. Academic Press, San Diego, 1999.; · Zbl 0924.34008
[40] I. Podlubny. Matrix approach to discrete fractional calculus. Frac. Calc. Appl. Anal., 3, No 4 (2000), 359-386.; · Zbl 1030.26011
[41] I. Podlubny, A. Chechkin, T. Skovranek, YangQuan Chen, and B. M. Vinagre Jara. Matrix approach to discrete fractional calculus II: Partial fractional differential equations. J. of Computational Physics, 228, No 8 (2009), 3137-3153. http://dx.doi.org/10.1016/j.jcp.2009.01.014; · Zbl 1160.65308
[42] H. Pollard. The complete monotonic charachter of the Mittag-Leffler function E α(−x). Bull. Amer. Math. Soc., 54 (1948), 1115-1116. http://dx.doi.org/10.1090/S0002-9904-1948-09132-7; · Zbl 0033.35902
[43] B. Rubin. Fractional Integrals and Potentials. Pitman Monographs and Surveys in Pure and Appl. Math., Vol. 82, Longman, Harlow, 1996.; · Zbl 0864.26004
[44] S.G. Samko, A.A. Kilbas, and O.I. Marichev. Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Amsterdam, 1993.; · Zbl 0818.26003
[45] E. Scalas, R. Gorenflo, F. Mainardi, and M. Raberto. Revisiting the derivation of the fractional diffusion equation. In: Scaling and Disordered Systems (Eds.: F. Family et. al.), World Scientific, 2002, 281-289.; · Zbl 1050.35163
[46] W.R. Schneider and W. Wyss. Fractional diffusion and wave equations. J. Math. Phys., 30 (1989), 134-144. http://dx.doi.org/10.1063/1.528578; · Zbl 0692.45004
[47] S. Shen, F. Liu, V. Anh, and I. Turner. Detailed analysis of a conservative difference approximation for the time-fractional diffusion equation. J. Appl. Math. Comput., 22, No 3 (2006), 1-19. http://dx.doi.org/10.1007/BF02832034; · Zbl 1111.65115
[48] A.P. Starovoitov and N.A. Starovoitova. Pade approximants of the Mittag-Leffler functions. Sbornik: Mathematics, 198, No 7 (2007), 1011-1023. http://dx.doi.org/10.1070/SM2007v198n07ABEH003871; · Zbl 1135.41005
[49] J. Tenreiro Machado, V. Kiryakova, F. Mainardi. Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulations, 16, No 3 (2011), 1140-1153, doi:10.1016/j.cnsns.2010.05.027. http://dx.doi.org/10.1016/j.cnsns.2010.05.027; · Zbl 1221.26002
[50] J. Tenreiro Machado, V. Kiryakova, F. Mainardi. A note and poster on the recent history of fractional calculus. Fract. Calc. Appl. Anal., 13, No 3 (2010), 329-334, http://www.math.bas.bg/ fcaa.; · Zbl 1221.26013
[51] J. Tenreiro Machado, V. Kiryakova, F. Mainardi. A poster about the old history of fractional calculus. Fract. Calc. Appl. Anal., 13, No 4 (2010), 447-454, http://www.math.bas.bg/ fcaa.; · Zbl 1222.26015
[52] J.A.C. Weideman and L.N. Trefethen. Parabolic and hyperbolic contours for computing the Bromwich integral, Working paper. Dec. 2005.; · Zbl 1113.65119
[53] A. Wiman. Über den Fundamentalsatz in der Theorie der Funktionen Acta Math., 29 (1905), 191-201. http://dx.doi.org/10.1007/BF02403202; · JFM 36.0471.01
[54] A. Wiman. Über die Nullstellen der Funktionen Acta Math., 29 (1905), 217-234. http://dx.doi.org/10.1007/BF02403204; · JFM 36.0472.01
[55] S. Winitzki. Uniform approximations for transcendental functions. Lecture Notes in Computer Science, Springer-Verlag, Volume 2667, 2003.;
[56] W. Wyss. The fractional diffusion equation. J. Math. Phys., 27 (1986), 2782-2785. http://dx.doi.org/10.1063/1.527251; · Zbl 0632.35031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.