×

Convergence of the Grünwald-Letnikov scheme for time-fractional diffusion. (English) Zbl 1127.65100

Convergence of the Grünwald-Letnikov difference scheme for the fractional diffusion equation [cf. R. Gorenflo and F. Mainardi, Oper. Theory, Adv. Appl. 121, 120–145 (2001; Zbl 1007.60082)], with and without central linear drift, is proved in the Fourier-Laplace domain, implying weak convergence of the discrete solution towards the probability of sojourn of a diffusing particle.
For the proof of convergence the authors distinguish between several cases, including classical diffusion, space-time fractional diffusion and time-fractional diffusion. The paper focuses on time-fractional diffusion. Discretisation is discussed and convergence to the corresponding fundamental solution is proved. Generating functions are used in the Fourier-Laplace domain. Convergence is proved for classical diffusion with central linear drift and for time-fractional diffusion with central linear drift.
Reviewer: Pat Lumb (Chester)

MSC:

65R20 Numerical methods for integral equations
60J60 Diffusion processes
26A33 Fractional derivatives and integrals
60G50 Sums of independent random variables; random walks
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
45K05 Integro-partial differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1007.60082
Full Text: DOI

References:

[1] E.A. Abdel-Rehim, Modelling and Simulating of Classical and Non-Classical Diffusion Processes by Random Walks, Mensch&Buch Verlag, ISBN 3-89820-736-6, 2004, available at \(\langle;\) http://www.diss.fu-berlin.de/2004/168/index.html \(\rangle;\); E.A. Abdel-Rehim, Modelling and Simulating of Classical and Non-Classical Diffusion Processes by Random Walks, Mensch&Buch Verlag, ISBN 3-89820-736-6, 2004, available at \(\langle;\) http://www.diss.fu-berlin.de/2004/168/index.html \(\rangle;\)
[2] Barkai, E.; Metzler, R.; Klafter, J., From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61, 1, 132-138 (2000)
[3] Chechkin, A.; Gonchar, V.; Klafter, J.; Metzler, R.; Tanatarov, L., Stationary states of non-linear oscillators driven by Lévy noise, Chem. Phys., 284, 233-251 (2002)
[4] Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Yu., Algorithms for the fractional calculus: a selection of numerical methods, Comput. Methods Appl. Mech. Engng., 194, 743-773 (2005) · Zbl 1119.65352
[5] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, vols. 1-3, McGraw-Hill, New York, 1953-1955.; A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, vols. 1-3, McGraw-Hill, New York, 1953-1955.
[6] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2, Wiley, New York, London, Sydney, Toronto, 1971.; W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2, Wiley, New York, London, Sydney, Toronto, 1971. · Zbl 0219.60003
[7] Gorenflo, R., Fractional calculus: some numerical methods, (Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics, CISM Courses and Lectures, vol. 378 (1997), Springer: Springer Wien), 277-290 · Zbl 0917.73004
[8] R. Gorenflo, E. A. Abdel-Rehim, From power laws to fractional diffusion: the direct way, Vietnam J. Math. 32 SI (2004) 65-75.; R. Gorenflo, E. A. Abdel-Rehim, From power laws to fractional diffusion: the direct way, Vietnam J. Math. 32 SI (2004) 65-75. · Zbl 1086.60049
[9] Gorenflo, R.; Abdel-Rehim, E. A., Discrete models of time-fractional diffusion in a potential well, Fractional Calculus Appl. Anal., 8, 173-200 (2005) · Zbl 1129.26002
[10] Gorenflo, R.; Mainardi, F., Fractional calculus: integral and differential equations of fractional order, (Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer: Springer Wien, New York), 223-276, (Reprinted in News 010101, see \(\langle\) http://www.fracalmo.org \(\rangle )\) · Zbl 1438.26010
[11] Gorenflo, R.; Mainardi, F., Random walk models approximating symmetric space-fractional diffusion processes, (Elschner, J.; Gohberg, I.; Silbermann, B., Problems in Mathematical Physics (2001), Birkhäuser Verlag: Birkhäuser Verlag Basel), 120-145 · Zbl 1007.60082
[12] Gorenflo, R.; Mainardi, F.; Moretti, D.; Pagnini, G.; Paradisi, P., Discrete random walk models for space-time fractional diffusion, Chem. Phys., 284, 521-541 (2002)
[13] Gorenflo, R.; Mainardi, F.; Moretti, D.; Paradisi, P., Time-fractional diffusion: a discrete random walk approach, Nonlinear Dynamics, 29, 129-143 (2002) · Zbl 1009.82016
[14] R. Gorenflo, S. Vessella, Abel Integral Equations: Analysis and Applications, Lecture Notes in Mathematics, vol. 1461, Springer, Heidelberg, 1991.; R. Gorenflo, S. Vessella, Abel Integral Equations: Analysis and Applications, Lecture Notes in Mathematics, vol. 1461, Springer, Heidelberg, 1991. · Zbl 0717.45002
[15] Gorenflo, R.; Vivoli, A., Fully discrete random walks for space-time fractional diffusion equations, Signal Process., 83, 2411-2420 (2003) · Zbl 1145.60312
[16] Hilfer, R.; Anton, L., Fractional master equations and fractal time random walks, Phys. Rev. E, 51, 2, R848-R851 (1995)
[17] R. Hilfer, R. Metzler, A. Blumen, J. Klafter (Eds.), Strange Kinetics, (Special Issue), Chemical Physics, vol. 284 Nos. (1-2), 2002.; R. Hilfer, R. Metzler, A. Blumen, J. Klafter (Eds.), Strange Kinetics, (Special Issue), Chemical Physics, vol. 284 Nos. (1-2), 2002.
[18] Langlands, T. A.M.; Henry, B. I., The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205, 719-736 (2005) · Zbl 1072.65123
[19] Lubich, Ch., Discretized fractional calculus, SIAM J. Math. Anal., 17, 704-719 (1986) · Zbl 0624.65015
[20] Lynch, V. E.; Carreras, B. A.; del-Castillo-Negrete, D.; Ferreira-Mejias, K. M.; Hicks, H. R., Numerical methods for the solution of partial differential equations of fractional order, J. Comput. Phys., 192, 406-421 (2003) · Zbl 1047.76075
[21] Mainardi, F.; Luchko, Yu.; Pagnini, G., The fundamental solution of the space-time fractional diffusion equation, Fractional Calculus Appl. Anal., 4, 2, 153-192 (2001), [Available at www.fracalmo.org, pre-print 0101] · Zbl 1054.35156
[22] Meerschaert, M. M.; Scheffler, H. P.; Mortensen, J., Vector Grünwald formula for fractional derivatives, Fractional Calculus Appl. Anal., 7, 1, 61-81 (2004) · Zbl 1084.65024
[23] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 127, 65-77 (2004) · Zbl 1126.76346
[24] Metzler, R.; Klafter, J., The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A, 37, R161-R208 (2004) · Zbl 1075.82018
[25] Mittag-Leffler, M. G., Sur la nouvelle fonction \(E_\alpha(x)\), C. R. Acad. Sci. Paris, 137, 554-558 (1903) · JFM 34.0435.01
[26] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego, Boston, New York, London, Sydney, Tokyo, Toronto · Zbl 0918.34010
[27] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives (Theory and Applications) (1993), OPA: OPA Amsterdam · Zbl 0818.26003
[28] Sokolov, I. M.; Klafter, J.; Blumen, A., Fractional kinetics, Phys. Today, 55, 48-54 (2002)
[29] Tamarkin, J. D., On integrable solutions of Abel’s integral equation, Ann. Math., 2, 31, 219-229 (1930) · JFM 56.0347.02
[30] Yuste, S. B.; Acedo, L., An explicit finite difference method and a new Von Neumann type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42, 1862-1874 (2005) · Zbl 1119.65379
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.